

Preface to Second Edition

The first edition of this book was appreciated by the students for its simplicity. The ~.'lr_~ ""~-'-'

maintains this feature along with inclusion of new tOfics and errors of previous edition
Every topic has been explained in depth without compromising over the lucidity of the tex d pnlg:J~s.

This approach makes this book suitable for both novices and advanced programmers.

Developl)1ent of logic and familiarity with the syntax and features of the language are the two p-
of excellent programming skills. The comprehensive contents of the chapters along with the num
example programs helps you to develop your logic in a stepwise manner and makes you feel comfo
with the syntax of the language. Remember that you can't learn swimming by just reading a book
how to swim, you have to jump into water for that, similarly if you want to learn programming, .
is essential for you to make your own programs. So start by understanding the programs given in the
book, work on them, modify them and see the results and try to make similar programs.

Each chapter is complemented by exercises with solutions that act as a review of the chapter. We strongly
recommend that you solve all the exercises before switching over to another topic. Exercises have been
structured in such a way that you can test and implement the knowledge acquired from the chapter,
and this is really important for getting full hold over a topic. We're sure if you understand the concepts,
you'll enjoy doing the exercises.

Our aim of writing this book is to, enable any student emerge as a full-fledged C programmer who can
withstand the challenges of the industry. This is the reason for inclusion of chapters on project building,
library development and code optimization. '"

We are thankful to our family and friends for their love and support.

If you have any problems or sugg~stions, please feel free to contact us at-

suresh_k_sri@yahoo.co.in

deepali_lko@yahoo.co.in

Suresh Kumar Srivastava

Deepali Srivastava

"

C in Depth

Preface to First Edition

Hello ! I am Suresh Kumar Srivastava. Firstly I want to tell you how the idea of writing a book on
'C' language came to my mind. When I was in 1st semester of 'B Level', C language was in my course.
I didn't know anything about computers. So at that time learning of 'C' language was very difficult
for me. I faced a lot of problems. After thorough studies o(many standard and authentic books in
'C', it became convenient for me to work in 'C'. Presently I am in a position to say that that I have
in-depth knowledge of 'c' and find myself in a position to help my juniors in making them comfortable
with 'C'. This idea inspired me to write a book which is easily understandable by beginners and contains
all theoretical concepts and their implementation in programming.

v

I was alone in this work. I was the initiator, visualizer and accomplisher for this work.

I am very thankful to my elder brother_ Raju Bhaiya and sister Reena didi for their love and care for
me and my work. I am thankful to g1y friend Sh-'lilesh Raghuvanshi for proof reading of my book.
I am also thankful to Mr. Manish Jain and Mr. Anil Tyagi of BPB Publications for considering my work.

Suresh Kumar Srivastava

vi

Contents

1. Introduction to C

1.1 Design Methods
1.1.1 Top-Down Design
1.1.2 Bottom-Up Design
1.1.3 Modular Approach

1.2 Programming Languages
1.2.1 Low Level Languages

1.2.1.1 Machine Level Language
1.2.1.2 Assembly Language

1.2.2 High-Level Languages
1.3 Translators
1.4 History Of C
1.5 Characteristics Of C
1.6 Structure Of A C Program
1.7 Environment For C

1.7.1 Unix Environment
1.7.2 MS-DOS Environment

1.7.2.1 Command Line
1.7.2.2 Integrated Development Environment

2. Elements of C
2.1 C Character Set

2.1.1 Alphabets
2.1.2 Digits
2.1.3 Special characters

2.2 Execution Characters/Escape Sequences
2.3 Trigraph Characters
2.4 Delimiters
2.5 Reserved Words / Keywords
2.6 Identifiers
2.7 Data Types
2.8 Constants

2.8.1 Numeric Constants
2.8.1.1· Integer constant
2.8.1.2 Real (floating point) Constants

2.8.2 Character Constants
2.8.3 String Constants

C in Deptl;

1.:6

1
1
2
2
2
2'
2
2
3
3
3
4
4
5
5
5
5

'" 6

7-16
7
7
7
7
8
8
9
9
9

10
10
11
11
12
13
13

4.12 Type Conversion
4.12.1 Implicit Type Conversions
4.12.2 Automatic Conversions
4.12.3 Type Conversion In Assignment
4.12.4 Explicit Type Conversion Or Type Casting

4.13 Precedence And Associativity Of Operators
4.14 Role Of Parentheses In Evaluating Expressions
4.15 Order Of Evaluation Of Operands
Exercise
Programming Exercise
Answers

5. Control Statements
5.1 Compound Statement' or Block
5.2 if...else

5.2.1 Nesting ofif...else'
5.2.2 else if Ladder

5.3 Loops
5.3.1 while loop
5.3.2 do...while loop
5.3.3 for loop
5.3.4 Nesting Of Loops
5.3.5 Infinite Loops

5.4 break statement
5.5 continue statement
5.6 goto
5.7 switch
5.8 Some Additional Problems
5.9 Pyramids
Exercise
Programming Exercise
Answers

6. Functions
6.1 Advantages Of Using Functions
6.2 Library Functions
6.3 User-Defined Functions'
6.4 Fu.nction Definition
6.5 Function Call
6.6 Function Declaration
6.7 return statement
6.8 Function Arguments
6.9 Types Of Functions

6.9.1 Functions With No Arguments And No Return Value-
6.9.2 Function With No Arguments But A Return Value
6.9,3 Function With Arguments But No Return Value

-----.
C in Depth

44
44
44
45
46
47
50
53
53
56
56

58-109
58
59
6\
63
65
65
69
71
75
77
78
80
82
84
9Q
99

103
108
109

110-157
110
110
III
112
113
114
116
118
120
120
121
121

~ -

i;..

r

C in Depth

6.9.4 Function With Arguments And Return Value
6.10 More About Function Declaration
6.11 Declaration Of Functions With No Arguments
6.12 If Declaration Is Absent
6.13 Order Of Evaluation Of Function Arguments
6.14 main() Function
6.15 Library Functions
6.16 Old Style Of Function Declaration
6.17 Old Style Of Function Definition
6.18 Local, Global And Static Variables

6.18.1 Local Variables
6.18.2 Global Variables
6.18.3 Static Variables

6.19 Recursion
6.19.1 Tower Of Hanoi
6.19.2 Advantages And Disadvantages Of Recursion
6.19.3 Local Variables In Recursion

6.20 Some Additional Problems
Exercise
Programming Exercise
Answers

7. Arrays
7.1 One Dimensional Array

7.1. 1 Declaration of 1-D Array
7: 1.2 Accessing I-D Array Elements
7.1.3 Processing 1-D Arrays
7.1.4 Initialization of I-D Array
7.1.5 I-D Arrays And Functions

7.1.5.1 Passing Individual Array Elements to a Function
7.1.5.2 Passing whole 1-D Array to a Function.

7.2 Two Dimensional Array
7.2.1 Declaration and Accessing Individual Elements of a 2-D array
7.2.2 Processing 2-D Arrays
7.2.3 Initialization of 2-D Arrays

7.3 Arrays With More Than Two Dimensions
7.3.1 Multidimensional Array And Functions

7.4 Introduction To Strings
7.4.1 Input and output of strings

7.5 Some Additional Problems
Exercise
Programming Exercise
Answers

8. Pointers

8.1 About Memory

ix

123
124
124
125
125
125
126
126
126
130
130
131
132
132
136
139
139
140
149
155

·156

158-195'
158
158
159
160

«.162
165
165
165
167
167
168
169
173
174
175
175
175
191
193
194

196-252

1%

;

x

8.2 Address Operator
8.3 Pointers Variables

8.3.1 Declaration Of Pointer Variables
8.3.2 Assigning Address To Pointer Variables
8.3.3 Dereferencing Pointer Variables

8.4 Pointer Arithmetic
8.5 Precedence Of Dereferencing Operator And Increment/Decrement Operators
8.6 Pointer Comp.arisons \ ,
8.7 Pointer To Pointer

\

8.8 Pointers and One Dimensional Arrays
8.9 Subscripting Pointer Variables
8.10 :Rpinter to an Array
8.11 PbintersAnd Two Dimensional Arrays
8.12 Subscripting Pointer To An Array
8.13 Pointers And Three Dimensional Arrays
8.14 Pointers And Functions
8.15 Returning More Than One Value From A Function
8.16, Function Returning Pointer
8.17 Passing a 1-D Array to a Function
8.18 Passing a 2-D Array to a Function
8.19 Array Of Pointers

. 8.20 void Pointers
8.21 Dynamic Memory Allocation

8.21.1 malloc()
8.21.2 calloc()
8.21.3 realloc()
8.21.4 free()
8.21.5 Dynamic Arrays

8.22 Pointers To Functions
8.22.1 Dedaring A Pointer To A Function
8.22.2 Calling A Function Through Function Pointer
8.22.3 Passing a Function's Address as an Argument to Other Function
8.22.4 Using Arrays Of Function Pointers

Exercise
Answers

9. Strings \
9.1 String Constant or String Literal
9.2 String Variables
9.3 String Library Functidns

, 9.3.1 strlen()
9.3.2 strcmp()
9.3.3 st{'cpy()
9.3.4 strcat()

9.4 String Pointers
9.5 Array Of Strings Or Two Dimensional Array Of Characters

1,.,.'

C in Depth

197
197
198
198
199
201
204
206
206
208
211
212
213
216

·217
219
221
222
223'
225
227
229
231
131
233
233
234
235
238
239
240
240
242
244
251

253-287
253
255
257
25

1
7

258
259

, /261
262
264

-

10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13

3
~

o
o
2
4
1

:7
53
55
57
5,7
58
59
61
.62
~64

C in D?[Jth

9.6 Array Of Pointers To Strings
9.7 sprintf()
9.8 sscanf()
9.9 Some Additional Problems
Exercise
Programming Exercise'
Answers

10. Structure And Union
10.1 Defining a Structure
10.2 Declaring Structure Variables

10.2.1 With Structure Definition
10.2.2 Using Structure Tag
Initialization Of Structure Variables
Accessing Member:s of a Structure
Assignment of Structure Variables
Storage of Structures in Memory
Size of Structure
Array of Structures
Arrays Within Structures
Nested Structures (Structure Within Structure)
Pointers to Structures
Pointers Within Structures
Structures And Functions
10. 13. 1 Passing Structure Members As Arguments
10.13.2 Passing Structure Variable As Argument
10.13.3 Passing Pointers To Structures As Arguments
10.13.4 Returning A Structure Variable From Function
10.13.5 Returning A Pointer To Structure From A Function
10.13.6 Passing Array Of Structures As Argument

10.14 Self Referential Structures
10.15 Linked List

10.15.1 Traversing a Linked List
10.15.2 Searching in a Linked List
10.15.3 Insertion into a Linked List
10.15.4 Insertion in the Beginning
10.15.5 Insertion in Between or at the end
10.15.6 Deletion From A Linked List
10.15.7 Deletion of First Node
10.15.8 Deletion of a Node in Between or at the End
10.15.9 Creation Of List
10.15. 10 Reversing A Linked List

10.16 union
10.17 typedef
Exercise
Programming Exercise
Answers

267
272
273
274
280
284
286

288-333'
288
289
289
289
290
290
292
292
293
293
295
296
298
299
299
299
300
301

<, 302
303
303
309
309
311
311
311
312
312
313
313
314
314
318·
321
326
329
332
332

11.4
11.5
11.6
11.7
11.8

11. Files
11".1
11.2
11.3

334-376
334
335
335
337
337
338
338
339
339
339
340
340
341
341
341
342
342
342
343
343
344
345
345
347
348
349

.. 350
351
362
362
363
364
364
364
365
365
366
366
366
367
367
368
374
375
376

C in Depth

Text And Binary Modes
Concept Of BufTer
Opening a File
11.3.1 Errors in Opening Files
Closing a File
End of File
Structure of a General File Program
Predefined File Pointers
Character I/O
11.8.1 fputc ()
11.8.2 fgetc()
11.8.3 getc() and putc()

11.9 Integer i/o
11.9.1 putw ()
11.9.2 getw()

11.1 0 String I/O
11.10.1 fputs()
11.1 0.2 fgets()

11.11 Formatted I/O
11.11.1 fprintf ()
11.11.2 fscanf ()

11.12 Block Read / Write
11.12.1 fwrite()
11.12.2 fread()

11.13 Random Access To File
'11.13.1 . fseek ()
11.13.2 ftelI()
11.13.3 rewind()

11.14 Other File Functions
11.14.1 feof()
11.14.'2 ferror()
11.14.3 c1earerr()
11.14.4 perror()
11.14.5 rename()
11.14.6 unlink()
11.14.7 remove()
11.14.8 fflush()
11.14.9 tmpfile()
11.14.10 tmpnam()
11.14.11 freopen()

11.15 Conmland Line Arguments
11.16 Some Additional Problems
Exercise
Programming Exercise
Answers

I
l
l
l
5
5
5
6
6
7
7
8
4
5
6

C in Depth

12. The C Preprocessor
12.1 #define
12.2 Macros with Arguments
12.3 Nesting in Macros
12.4 Problems with Macros
12.5 Macros Vs Functions
12.6 Generic Functions
12.7 #undef
12.8 Stringizing Operator (#)
12.9 Token Pasting Operator(##)
12.10 Including Files
12.11 Conditional Compilation

12.11.1 #if And #endif
12.11.2 #else and #elif
12.11.3 de.fined Operator
12.11.4 #ifdef arid #ifndef
12.11.5 Writing Portable Code
12.11.6 Debugging
12.11.7 Commenting A Part Of Code
12.11.8 Other Uses of conditional compilation

12.12 PredefiI).ed· Macro Names
12.13 #line
12.14 #error
12.15 Null Directive
12.16 #pragma
12.17 How to see the code expanded by the Preprocessor
Exercise
Answers

13. Operations on Bits
13.1 Bitwise AND (&)
13.2 Bitwise OR (I)
13.3 Bitwise XOR (1\)

13.4 One's Complement (~)
13.5 Bitwise Left Shift («) .
13.6 Bitwise Right Shift (»)
13.7 Multiplication and Division by 2 using shift operators
13.8 Masking

13.8.1 Masking Using Bitwise AND
13.8.2 Masking Using Bitwise OR
13.8.3 Masking Using Bitwise XOR
13.8.4 Switching off Bits Using Bitwise AND and Complement Operator

13.9 Some additional Problems
13.10 Bit Fields
Exercise
Answers

xiii

377-406
3 8
379
381
382
385
386
387
387
388
389
389
390
390
393
393
395
396
397
397

·398
399
399

400
400
401
401
405

~

407-432
408
408
409
410
411
411
412
413
413
415
415
416

18
~_6

_9

14. Miscellaneous Features In C
14.1 Enumeration
14.2 Storage C1as~es

14.2.1 Automatic
14.2.2 External
14.2.3 Static

14.2.3.1 Local Static Variables
14.2.3.2 Global Static Variables

14.2.4 Register
14.3 Storage Classes in Functions
14.4 Linkage
14.5 Memory During Program Execution
14.6 const
14.7 volatile
14.8 Functions With Variable Number Of Arguments

14.8.1 Passing Variable Number of Arguments To Another Function
14.9 lvahie and rvalue
14.10 Compilation And Execution of C Programs

14.10.1 PreprocessoJ;
14.10.2. Compiler
14.10.3 Assembler
14.10.4 Linker

.Exercise
Answers

15. Building project and, creation of library
15.1 Requirement Analysis
15.2 Top Level Design
15.3 Detail Design
15.4 Coding

15.4.1 Dtmanip.h
15.4.2 . Datefmt.c
15.4.3 Valid.c
15.4.4 Leap.c
15.4.5 Julian.c
15.4.6 Weekday.c
15.4.7 Cmpdate.c
15.4.8 Diffymd.c
15.4.9 Diffdays.c
15.4.10 Addyear.c
15.4.11 Subyear.c
15.4.12 Addmonth.c
15.4.13 Submonth.c
15.4.14 Adddays.c
15A15 Subdays.c
15:4.16 Main.c

C ill Depth

433-463
433
437
437
439
442
442
443
444
445
445
445
447
449
450
454
456
457
457
457
457
457
458'
463

464-486
464
465

~

465
468
468
469
469
470
470
471
472
472
473
474
474
475
475
476

·477
477

5
5
7
9
o
4
6
7
7 -

7
;7
i7
i8'
;3

16
54
55
55
58
68
69
69
70
70
71
72
72
73
·74
f74
~75

~75

~76

~77

P7

C in Depth

15.5 Building Project in Turbo C
15.6 Testing
15.7 Creation Of Library And Using it in your Program in Turbo C

15.7.1 Deletion of a Module From Library
15.7.2 Getting Modules From Library
15.7.3 Changing Version Of Module In Library

15.8 Building Project On Unix
15.8. ~ Writing Makefile
15.8.2 Building Project With Make

15.9 Creation Of Library And Using In Your Program in Unix

16. Code Optimization in C
16.1, Optimization is a Technique
16.2 Optimization With Tool
16.3 Optimization With Loop

16.3,1 Loop Unrolling
16.3.2 Avoiding Calculations In Loops

16.4 Fast Mathem~tics

16.4.1 Avoid Unnecessary Integer Division
16.4.2 Multiplication And Division by Power Of 2

16.5 Simplifying Expressions
16.6 ,Declare prototypes for Functions
16.7 Better Way Of Calling Function
16.8 Prefer int to char or short
16.9 Use of Register Variables
16.1 0 Opti~ization With Switch Statement
16.11 Avoid Pointer Dereference
16.12 Prefer Pre Increment/Decrement to Post Increment/Decrement
16.13 Prefer Array to Memory Allocation
16.14 Use Array Style Code Rather Than Pointer
16.15 Expression Order {,Jnderstanding
16.16 Declaration Of Local Function
16.17 Breaking Loop With Parallel Coding
16.18 Trick to use Common Expression
16.19 Declaring Local Variables Based On Size
16.20 Prefer Integer Comparison
16.21 Avoid String Comparison

. C and Assembly Interaction
17.1 Inline Assembly Language
17.2 Linking Of Two Assembly Files

17.2. 1 Memory Models
17.2.2 C And Segments in Library

17.3 Linking Assembly Procedure in C Program

xv

481
48'1
482
482
483
483
483
484
486
486

487-494
487
487
487
487
488
488
488
488
489
489
489
489
490
490
492
492
492
492
492
493
493
493
494
494
494

495-504
495
498

, 500

500
502

._-- ~-- -----

505-52:
50:
50:
50:
50:
50:
50:
50:
501
501
,SOl
501
501
501
501
501
50'
50'
50'
50'
50'
SO',

'§O'

SO',
50~

50~

501
501
501
SOl
501
501
501
501
SOl
SOl
505
505
505
50S
50S
50S
50S
SIC
SIC
SIC

C in Dept!.

18. Library Functions
18.1 Mathematical Functions

18.1.1abs()
18.1.2 acos()
18.1.3 asin()
18.1.4 atan()
18.1.5 atan2()
18.1.6 cabs()
18.1.7 ceil()
18.1.8 cos()
18:1.9 cosh()
18.1.10 exp()
18.1.11 fabs(J
18.1.12 floor()
18.1.13 fmod()
18.1.14 frexpC)
18,1.15 Idexp()
18.1.16 log()
18.1.17 log10()
18.1.18 modf()
18.1.19 pow()
18.1.20 sin()
18.1.21 sinh()
18.1.22 sqrt()
18.1.23 tan()
18.1.24 tanh()

18.2 Character Type Functions
18.2.1 ,isalnum()
18.2.2 isalpha()
18.2.3 iscntrl()
18.2.4 ,isdigit()
18.2.5 isgraph()
18.2.6 islower()
18.2.7 isprint()
18.2.8 ispunct()
18.2.9 isspace()
18.2.10 isupper()
18.2.11 isxdigit()
18.2.12 tolower()
18.2.13 toupper()

18.3 String Manipulation Functions
18.3.1 strcat()
18.3.2 strchr()
18.3.3 strcmp()
18.3.4 strcpy()
18.3.5 strcspn()

7th

;21
505
505 .
505
505
505
505
505
506
506
,506
506
506
506
506
506
507
507
507
507
507
507
~07

507
507
507
508
508
508
508
508
508
508 .
508
508
508
509
509
509
509 .
509
509
509
510
510
-10

C in Depth

18.3.6 strlen()
18.3.7strncat()
18.3.8 strncmp()
18.3.9 strncpy()
18.3.10 strpbrk()
18.3.11 strrchr()
18.3.12 . strspn()
18.3.13 strstr()

18.4 Input/Output Functions
18.4.1 access()
18.4.2 chmod()
18.4.3 clearerr()
18.4.4 close()
18.4.5 create)
18.4.6 fclose()
18.4.7 feof()
18.4.8 ferror()
18.4.9 fflush()
18.4.10 fgetc()
18.4.11 fgets()
18.4.12 fileno()
18.4.13 fopen()
18.4.14 fprintf()
18.4.15 fplitc()
18.4.16 fputs()

_18.4.17 fread()
18.4.18 fputchar()
18.4.19 fscanf()
18.4.20 fseek()
18.4.21 fstat()
18.4.22 ftell()
18.4.23 isatty()
18.4.24 open()
18.4.25· read()
18.4.26 remove()
18.4.27 rename()
18.4.28 setbuf()
18.4.29 sopen()
18.4.30 stat()
18.4.31 sprintf()
18.4.32 sscanf()
18.4.33 tell()
18.4.34 tmpfile()
18.4.35 tmpnam()
18.4.36 unlink()

510
510
511
511
512
512
512
512
513
513
513
514
514
514 .
514
514
514
515
-515
515
515
515
515
516
516
.516
516

" 516
SIp
517
517
517
517
518
518
518
518
519
520

. 520
520
520
520
520
521

"

Chapter 1

Introduction to C

oftware is a collection of programs and a program is a collection of instructions given to the computer.
Development of software is a stepwise process. Before developing a software, number of processes

e done. The first step is to understand the user requirements. Problem analysis arises during the
requirement phase of software development. Problem analysis is done for obtaining the user requirements
and to determine the input and output of the program.

'=or solving the problem, an "algorithm" is implemented. Algorithm is a sequence of steps that gives
ethod of solving a problem. This "algoritnm" creates the logic of program. On the basis of this

-algorithm", program code is written. The steps before writing program .code are as~

User requirements

Problem analysis

t
Input and Output

t
Designing algorithm /

Program coding

Process of program development'

/

/

.1 Design Methods
:Jesigning is the first step for obtaining solution of a given problem. The purpose of designing is ~o

represent the solution for the system. It is really difficult to design a large system because the complexity
system cannot be represented easily. So variqus methods have been evolved for designing.

.1.1 Top-Down Design
.c:. 'ery system has several hierarchies of components. The top-level com~onent represents the whole
~ tern. Top-Down design method starts from top-level component to lowest level (bottom) component.

this design method, the system is divided into some major components.

1.2 Programming Languages

Then each major component is divided into lower level components. Similarly other components are
divided till the lowest level component.

Bottom-Up design method is the reverse of Top-Down approach. It starts from the lowest level component
to the highest-level component. It first designs the basic components and from these basic components
the higher-level components are designed.

C ill Depth

Bottom-Up Design

Modular Approach

1.1.2

1.1.3

It is better to divide a large system into modules. In terms of programming, module is logically a well
defined part of program. Each module is a separate part of the program. It is easy to modify a program
written with modular approach because changes in one module don't affect other modules of program.
It is also easy to check bugs in the program in module level programming.

Before learning any language, it is important to know about the various types of languages and their
features. It is interesting to know what were the basic requirements of the programmers and wha1
difficulties they faced with the existing languages. The programming languages can be classified into
two types-
1. Low level languages

. \
2. HIgh level languages

The languages in this category are the Machine level language and Assembly language.

1.2.1.1 Machine Level Language

Computers can understand only digital signals, which are in binary digits i.e. 0 and 1. So the instructiom
given to the computer can be only in binary codes. The machine language consists of instructions thai
are in binary 0 or 1. Computers can understand only machine level language.

Writing a program in machine level language is a difficult task because it is not easy for programmen
to write instructions in binary code. A machine level language program is error-prone and its maintenancE
is very difficult. Furthennore ma.chine language programs are not portable. Every computer has its owr
n'1achine instructions, so the programs written for one computer are not valid for other computers.

1.2~.1.2 Assembly Language

The et~ifficulties faced in machine level language were reduced to some extent by using a modified fom
ofmacL'ine level language called assembly language. In assembly language instructions are given in Englist
like words, such as MOV, ADD, SUB etc. So it is easier to write and understand assembly programs,
Since a computer can understand only machine level language, hence assembly language program musl
be translated into machine language. The translator that is used for Itranslating is called "assembler"

Although writing programs in assembly language is a bit easier, but still the programmer has to knoVl
all the low level details related with the hardware of a computer. In assembly language, data is stored
in computer registers and each computer has different set of r~gisters. Hence the assembly languagE
program is also not portable. Since the low level languages are related with the hardware, hence thE
execution of a low-level program is faster. .

1.2.1 Low Lev"el Languages

th Introduction to C 3

lfe 1.2.2 High-Level Languages

ent
nts

High-level languages are designed keeping in mind the features of portability i.e. these languages are
machine independent. These are English like languages, so it is easy to write and understand the programs
of high-level language. While programming in a high level languag\e, the programmer is not concerned
with the low level details, and so the whole attention can be paid to the logic of the problem being
solved. For translating a high-level language program into machine language, compiler or interpreter is
used. Every language has its own compiler or interpreter. Some languages in this category are- FORTRAN,
COBOL, BASIC, Pascal etc.

We know that computers can understand only machine level language, which is in binary 1 or O. It
is difficult to write and maintain programs in machine level language. So the need arises for converting
the code of high-level and low-level languages into machine level language and translators are used for
this purpose. These translators are just computer programs, which accept a program written in high
level or low-level, language and produce an equivalent machine language program as output. The three
types of translators used are-

• Assembler
• Compiler
• Interpreter'

Assembler is used for converting the code oflow-levellanguage (assembly language) into machine level
language.

Compilers and interpreters are used to convert the code of high-level language into machine language.
The high level program is known as source program and the corresponding rn~chine language program
is k~own ~~ obje~t prog~am. Although both complle;s and interPr~ters perform the ;ame task but the~e
is a' differerice in their working. .

A compiler searches all the errors of program and lists them. If the program is error free then it converts
the code of program i~to machine cod~ and then the program can be executed by separate comlnands.
An interpreter checks the errors of program statement by statement. After checking one statement, it
converts that statement into machine erode and then executes that statement. This process continues
until the last statement of program or an erroneous statement occurs.

ell-
~am

am.

heir
That
into

IOns
that

ners
ance
own
ters.

1.3

1.4

Translators

History Of C

form
glish
ams.
must
ller".

mow
tored
~uage

e the'

In earlier days, every language was designed for some specific purpose. For example FORTRAN (Formula
Translator) was used for scientific and mathematical applications, COBOL (Common Business Oriented
Language) was used for business applications. So need of such a language was felt which could withstand
most of the purposes. "Necessity is the mother of invention". From here the first step towards C was
put forward by Dennis Ritchie.

The C lalfguage was developed in 1970's at Bell laboratories by Dennis Ritchie. Initially it was designed
for programming in the operating system called UNIX. After the advent of C, the whole UNIX operating
system was rewritten using it. Now almost tlvc entire UNIX operating system and the tools supplied
with it including the C compiler itself are written in C.

The C language is derived from the B language, which was written by Ken Thompson at AT&T Bell
laboratories. The B language was adopted from a language called BCPL (Basic Combined Programming
Language), which was developed by Martin Richards at Cambridge University.

1.5 Characteristics of C

local variables
statements

local variables
statements

C in Depth

Comments can be placed anywhere in a program and are enclosed qetween the delimiters /* at
*/.Comments are generally used for documentation purposes. I

}

func2(
{

In 1982 a committee was formed by ANSI (American National Standards Institute) to standardize thl
C language. Finally in 1989, the standard for C language was introduced known as ANSI C. Generall~

most of the modern compilers conform to this standard.

Comments
Preprocessor di'r'fctives
Global variables \
main(function\
{

local variables
\tatements

}

funcl(
{

It is a middle level language. It has the simplicity of a high level language as well as the power of ;
low level language. This asp;ct of C makes it suitabl~ for writing both application' programs and systen
programs. Hence it is an excellent, efficient and general-purpose language for most of the application

I such as mathematical, scientific, business and system software applications.

C is small language, consisting of only 32 English words known as keywords (if, else, for, break etc.:
The power of C is augmen,ted by the library functions provided with it. Moreover, the langua'ge i
extendible since it allows the users to add their own library functions to the library. \

C contains control constructs needed to write a structured program hence it is considered a structure
programming language. It includes structures for selection (if.. .else, switch), repetition (while, fo
do ...while) and for loop exit\ (break). . .

The programs w~itten in C aile portable i.e. programs written for one type of computer or operatin
system can be run \on anothet type of computer or operating system.

1.6 StructJre of a C Program ,
C program is a colle\tion of one or more- functions. Every function is a collection of statements an
performs some specific task. The general structure of C program is-

Introduction to C 5

Preprocessor directives are processed through preprocessor before the C source code passes through
ompiler. The commoniy used preprocessor directives are #include and #define. #include is used for

including header files. #define is used to define symbolic constants and macros.

Every C program has one or more functions. If a program has only one function then it must be mainO..
Execution of every C program starts with maine) .function. It has two parts, declaration of local variables
and statements. The ~ci'pe of the local variable is local to that function only. Statements in the mainO
function are executed one by one. Other functions are the user-defined functions, which also have local
variables and C statements. They can be defined before or after maine). It may be possible that some

ariables have to be used in many functions, so it is necessary to declare them globally. These variables
are called global variables.

1.7 Environment For C
The steps for the execution of C program are as-
1. Program creation
2. Program compilation
3. Program execution

The C programs are written in :mostly two environments, UNIX and MS-DOS.

1.7.1 Unix Environment

Generally a command line C compiler is provided with the UNIX operating system. This compiler is
named cc or gcc,

(a) Program creation

In unix environment, file can be created with vi editor as

$ vi filename.c

Here $ is the unix prompt. The file can be saved by pressing ESC and SHIFT+zz.
. --

) Program compilation

After creation of C program, it can be compiled as

$cc filename.c

the program has mathematical function then it is compiled as

$cc filename.c -1m

After compilation, the executable code is stored in the file a.out .

) Program execution

_\fier the compilation of program, it can be executed as

$ a.out
.....

.7.2 MS-DOS Environment

- MS-DOS environment creation, compilation and execution can be done using command line or IDE
mtegrated Development Environment).

.7.2.1 Command Line

Borland C, the command line compiler is bcc.exe and in Turbo C the command line compiler is tcc.exe.

(a) Program creation

The program file can be created using any editor and should be saved with .c extension.

(b) Program compilation

After saving the file, C program Gan be compiled at DOS prompt by writing

C:\>tcc filen'ame (in Turbo C)

C:\>bcc filename (in Borland C)

(c) Program execution

After compilation of C program, the executable file filename.exe is created. It is executed at DOS promp
by writing-

C:\>filename

1.7.2.2 Integrated Development Environment

All these steps can be performed in an IDE using menu options or shortcut keys. In Borland C thl
program bc.exe is the IDE and in Turbo C the program tC.exe is the IDE. So we can open the IDI
by typing bc or tc at the command prompt.

(a). Program creation

A new file can be created from menu optign New. The file can be saved by menu option Save. If th,
file is unnamed then it is savell by menu option Save as. An existing file can be opened from the mem
option Open.

(b) Program. compilation

The file compiled by the menu option Compile. (Alt+F9)

(c) Program execution

The file can be executed by the menu option Run. (Ctrl+F9). The output appears in the outp,ut windm
that can be seen using the keys Alt+F5. .

We have' given you just a preliminary knowledge of how to execute your programs. There are seven;
other options that you can explore while working and it is best to check the manual of your compile
to know about these options.

6 C in Depth

pth

Chapter 2

Elements of C
Impt

~ the
IDE

Every language has some basic elements and grammatical rules. Before understanding programming,
- is must to know the basic elements of C language. These basic elements are character set, variables,

tatypes, constants, keywords (reserved words), variable declaration, expressions, statements etc. All
of these are l,lsed to construct a- C program.

.1 C Character Set
:fie c~aracters that are used in C programs are given below-

f the .1.1 Alphabets
nenu A, B, C Z

a, b, c z

Digits

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

"
Character Meaning Character Meaning

+ plus sign - minus sign(hyphen)

* asterisk % percent sign
\ Backward slash / forward slash
< less than sign . = equal to sign
> greater than sign underscore-
(left parenthesis) right parenthesis
{ left braces } right braces
[left bracket] right bracket
, comma period
,

single quotes " double quotes
: colon ; Semicolon
? Question mark ! Exclamation sign
& ampersand I vertical bar
@ at the rate A caret sign
$ dollar sign # hash sign

- tilde sign
,

back quotation mark

Idow

veral
tpiler

_.1.3 Special characters

8 C in Depth

2.2 Execution Characters/Escape Sequences
. Characters are printed on the screen through the keyboard but some characters such as newline, tab,
. backspace cannot be printed like other normal characters. C supports the combination of backslash (\)

and some characters from the C character set to print these characters.

These. character combinations are known as escape sequences and are represented by two characters.
The first character is "\" and second character is from the C character set. Some escape sequences
are given below-

Escape Meaning ASCII Value Purpose
Sequence

\b backspace 008 Moves the cursor to the previous position of the
current line

\a bellealert) 007 Produces a beep sound for alert

\r carriage return- 013 Moves the cursor to beginning of the current line.·

\n newline 010 Moves the cursor to the beginning of the next line

\f form feed 012 Moves the cursor to the initial position of the next
logical page.

\0 .null 000 Null

\v vertical tab 011 Moves the cursor to next vertical tab position

\t Horizontal tab 009 Moves the cursor to the next horizontal tab position.

\\ backslash 092 Presents a character with backslash (\)

Blank, horizontal tab, vertical tab, newline, carriage return, form feed are known as whitespace in (
language.

2.3 Trigraph Characters
There is a possibility that the keyboard doesn't print some characters. C supports the facility of "trigrapJ
sequence" to print these characters. These trigraph 'sequences have three characters.. First two an
'??' and third character is any character from C character ·set. Some trigraph sequences are as give]
helow-

Trigraph Sequence Symbol

??< { left brace

17> } right brace

??([left bracket

??)] right bracket

??! I vertical bar

??/ \ backslash

??= # hash slgn

??- ~ tilde

??' /\ caret

Jth Element of C 9

2.4 Delimiters

'.
()
[]

{ }
#

tab,
(\)

ers.
ices

Delimiters are used for syntactic meaning in C. These are as given below-

colon used for label
semicolon end of statement
parentheses used in expression
square brackets used for array
curly braces used for block of statements
hash preprocessor directive
comma variable delimiter

the 2.5 Reserved Words / Keywords

extern
if
return

static
umon
while

char
do

case
continue default
else enum
for goto

long register

signed sizeof
switch typedef
void volatile

double
float
int

short
struct

unsigned

There are certain words that are reserved for doing specific tasks. These words are known as keywords
d they have standard, predefin~d meaning in C. They are always written in lowercase. There are only

_ keywords available in C which are given below-

auto . break
const

in C

ne.
ine
lext

_.6 Identifiers

sraph
o are
given

the words that we'll use in our C programs will be either keywords or identifiers. Keywords are
_ defined and can't be changed by the user, while identifiers are user defined words and are used to
-' e names to entities like variables, arrays, fUi1ctions, structures etc. Rules for naming identifiers are
~. 'en below-

) The name should consist of only alphabets (both upper and lower case), digits and underscore
sign(_).

_) First character should be an alphabet or underscore.

) The name should not be a keyword.
) Since C is case sensitive, the uppercase and lowercase letters are considered different. For example

code, Code and CODE are three different identifiers.
:) An identifier name may be arbitrarily long. Some implementations of C recognize only the first

eight characters, though most implementations recognize 31 characters. ANSI standard compilers
recognIze 31 characters.

_ e identifiers are generally given meaningful names. Some examples of valid identifier names-

Value a net-pay rec 1 data MARKS

e examples of invalid identifier names are-

Constant is a vll1ue that cannot be changed during execution of the program. There are three type1
of constants-

C supports different types of data. Storage representation of these data types is different in memory.
There are four fundamental datatypes in C, which are int, char, float and double..

'char' is used to store any single character, Oint' is used to store integer value, 'float'·is used for storing
single precision floating point number and 'double' is used for storing double precision floating point
number. We can use type qualifiers with these basic types to get some more types.

There are two types of type qualifiers-
1. Size qualifiers short, long
2. Sign qualifiers signed, unsigned

When the qualifier unsigned is used the number is always positive, and when signed is used number
may be positive or negative. If the sign qualifier is not mentioned, then by default signed qualifier is
assumed. The range of values for signed data types is less thantliat of unsigned type. This is because
in signed type, the leftmost bit is used to represent the sign, while in unsigned type this bit is also used
to represent the value.

The size and range of different data types on a 16-bit machine is given in the following table. The size
and range may vary on machines with different word sizes. .

Basic data Data types with Size(bytes) Range
types type qualifiers

char char or signed char 1 -128 to 127

unsigned char 1 o to 255 .

int int or signed int 2 -32768 to 32767

unsigned int 2 o to 65535

short int or signed short int 1 -128 to 127

unsigned short int 1 o to 255

-lopg int or signed long int 4 -2147483648 to 214748,3647

unsigned long int 4 o to 4294967295

float float 4 3.4E-38 to 3.4E+38

double double 8 1.7E-308 to 1.7E+308

long double 10 3.4E-4932 to 1.1E+4932

C in Depth

First character should be an alphabet or underscore
int is a keyword
is a special character
blank space is not permitted

Constants'

5bc
int
rec#
avg no

2.7 Data Types

2.8

10

I
Hexadecimal

th

ry.

ng
int

::/ement of C

I
Decimal

I
Integer

consrant

Octal

I
Numeric
constant

I I
Real

constant

Constants"

Character
constant

I
String

constant

11

Jer
. IS

JS~

;ed

ize

.8.1 Numeric Constants

_-mneric constants consist of numeric digits, they mayor may not have decimal pointe ",). These are
- ~ rules for defining numeric constants-

Numeric constant should have at least one digit.
No comma or space is allowed within the numeric constant. "
Numeric constants can either be positive or negative but default sign is always positive.

~ ere are two types of numeric constants-

_.8.1.1 Integer constant

ger constants are whole numbers which have no decimal point (.). There are three types of integer
_ stants based on different number systems. The permissible characters that can be used in these

_ c::lstants are-

,47

Decimal constants - 0,1,2,3,4,5,6,7,8,9
Octal "constants - 0,1,2,3,4,5,6,7
Hex decimal constants - 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,a,b,c,d,e,f

e valid decimal integer constants are-

°123
3705
23759

e invalid decimal integer constants are-

Invalid Remark

2.5 illegal character (.)
3#5 illegal character (#)
98 5 No blank. space allowed
0925 First digit can not be zero
8,354 Comma is not allowed'

octal integer .constants; first digit must be 0. For example

°05

(base 10)
(base 8)
(base 1.6)

-~~--------'--------------~---~~._---

C in Depth

teger ~r a reai number, while the exponent can be only an integer (positive
the n limber 1800000 can be written as 1.8e6, here 1.8 is mantissa and 6 is

exam les are as- ,

-
Number Exponential form

2500000000 ~ 2.5* 109' 2.5e9
0.0000076 ~ 7.6*10.6 7.6e-6
-670000 ~ -6.7* 105 -6.7E5

077
0324

By default the type of a floating point constant is double. We can explicitly mention lh'" J 0 constant·
by suffixing it with a for F (for float type), I or L (for long double). For ex

2.3e5 floating point constant of type double
2.4e-9l or 2.4e-9L floating point constant of type long double
3.52f or 3.52F floating point constant of type float

I

In hexadecimal integer constants, first two characters should. be Ox or OX. Some examples are as

Ox
OX23
Ox515
OXA15B
OxFFF .

Oxac

By default the type of an integer constant is int. But if the value of integer constant exceeds the range
of values represented by int type, the type is taken to be unsigned int or long int. We can also explicitly
mention the type of the constant by suffixing it with I or L(for long), u or U (for unsigned), ul or
UL (for unsigned long). For example- .

6453 Integer constant of type int
45238722UL or 45238722uI Integer constant of type unsigned long int

6655U or 6655u Integer constant of type unsigned int

2.8.1.2 Real (floating point) Constants

Floating point constants are numeric constants that contain decimal point. Some valid floating point
constants are-

0.5
5.3
4000.0
0.0073

5597. /

39.0807 '/" ' .

For expr.essin~ ver~ frge or ~ery small real constants, e~ponential (scientific) form is used. Here .the
number IS wntten Itt the mantissa and exponent form, WhICh are sep~e' or 'E'. The mantissa
can be an in or negative).
For example the exponent.
Some more

12

ent of C'

8.2 Character Constants

13

.- haracter constant is a single character that is enclosed within single quotes. Some valid character
_ stants are-

'9' 'D' '$'
, , '#'

e invalid character constants are-

Invalid· Remark

'four' There should be only one character within quotes
"d" Double quotes are not allowed

" No character between single quotes
y Single quotes missing

:=: ery character constant has a uni,que integer value associated with it. This integer is the numeric value
~ the character in the machine's character code. If the machine is using ASCII (American Standard
ooe for Information Interchange), then the character 'G' represents integer value 71 and the character
- represents value 53. Some ASCII values are-

. A - Z ASCII value (65 - 90)

a - z ASCII value (97 - 122)
o - 9 ASCII value (48 - 57)

ASCII value (59)

CII values for all characters are given in Aypendix A.

_.8.3· String Constants

tring constant has zero, one or more than one character. A string constant is enclosed within double
... otes (" "). At the end of string, \0 is 'automatically placed by the compiler. ".

me examples of string constants are-
"Kumar"
"593"
"8"

"A"

_-ote that "A" and 'A' are different, the first one is a string constant which consists of character A
and \0 while the second one is a character constant which represents integer value 65.

2.8.4 Symbolic Constants
If we want to use a constant several times then we can provide it a name. For example if we have
to use the constant·3.14159265 at many places in our program, then we can give it a name PI and
use this name instead' of writing the constant value everywhere. These types of constants are called

. symbolic constants or named constants.

A symbolic constant is a name that substitutes for a sequence of characters. The characters may represent
a numeric constant, a character constant or a string constant.

These constants are generally defined at the beginning of the program as-

#define name value

Here 'name' is the symbolic name for the constant, and is generally written in uppercase letters. 'value'
can be numeric, character or string constant.

Some examples of symbolic constants are as-
#define MAX 100
#define PI 3.14159625
#define CH 'y'
#define NAME "Suresh"

In the program, these names will be replaced by the corresponding values. These symbolic constants
improve the readability and modifiability of the program.

2.9 Variables

14 C in Depth

Variable is a name that can be -used to store values. Variables can take different values but one at a
time. These values can b~ changed during execution of the program. A data type is associated with
each variable. The data type of the variable decides what values it can take. The rules for naming variables
are same as that for naming identifiers.

2.9.1 Declaration of Variabres '

. . .

In the last declaration only variable total has been initialised.

When a variable is declared it contains undefined value commonly known as garbage value. If we want
we can assign some initial value to the variable during the declaration itself, this is called initialisation
of the variable. For example-

int a = 5;
float x = 8.9, Y = 10.5;
char ch = 'y';
double num = 0.15197e-7;
int 1, m, n, total = 0;

It is must to declare a variable before it is used in the program. Declaration of a variable specifies it&
name and datatype. The type and range of values that a variable can store depends upon its datatypej
The syntax of declaration of a variable is- -

datatype variablename;

Here datatype may be int, float, char, double etc. Some examples of declaration of variables are

int.x;
float salary;
char grade;

Here x is a variable of type int, salary is a variable of type float, and grade is a variab~e of type char.
We c~n also declare more than one variable in a single declaration. For example-)

Illt x, y., z, total;

Here x, y, z, total are all variables of type int.

Initialisation of Variables2.9.2

- expression is a combination of operators, constants, variables and function calls. The expression
be arithmetic, logical or relationaL --: .

e examples are as-

x+y - arithmetic operation
a = b+c - uses two operators (=') and (+)

a > b - relational expression '
a . b - logical expression

func(a, b) - function call

II study about these operators and expressions in the next chapter.

1 Statements

ent of C

_10 Expressions

15

jx = y - z;

func(a , b);

ement that 'has only a semicolon is also known as null statement. For example

. /* null statement >/< /

_ C program, instruc.tions are written in the form of statements. A statement is an executable part
- e program and causes the computer to carry out some action. Statements can be categorized as

Expression statements

Compound statements
Selection statements (if, if. .. else, switch)
Iterative statements (for, while, do, ..while)

Jump statements (goto, continue, break, return)
Label statements (case, default, label statement used in goto)

.1 Expression Statement
sion statement consists of an expression followed by a semicolon. For example

x = 5;

.2 Compound Statement

mpound statement consists of several statements enclosed within a pair of curly braces { }.
"'~:....l.ouund statement is also known as block of statements. Note that there is no semicolon after the

g brace. For example-

::'nt 1=4, b=2, h=3;
::'nt area, volume;
area=2*(1*b+b~h+h*1);
olume=l*b*h;

.: variable is to be declared inside the block then it can be declared only at the beginning of the
The variables that are declared inside a block can be used only inside that block. All other categories

- ements are discussed in further chapters.

C in Depth

(single line comment)
(multiple line comment)

we can', write a comment inside ano,\comment

2 12 Comments• I

/
Comments are:used for increasing readability of the program. They explain the purpose of the program
and are helpful in understanding the program. Comments are written inside /* and */. There can be
single line or multiple line comments. We can write comments anywhere in a program except inside
a string constant or a character constant.

Some examples of comments are-'
/*Variable b represents basic salary*/
/*This is a C program to calculate

simple interest *1

Comments can't be nested i.e.

16

Chapter 3

Input-Output In C

are three main functions of any program- it takes data as input, processes is data and gives
utput. The input operation involves movement of data from an input device (gen rally keyboard)
rnputer m~mory, while in output operation the data moves from computer memor to the output

(generally screen). C language does not provide any facility for input-output operations. The input
t is performed through a set of library functions that are supplied with every C compiler. These
·ons are formally not a part of the language but they are considered standard for all input-output
ions in C. The set of library functions that performs input-output operations is known as standard

ibrary.

are several header files that provide necessary information in support of the various library functions.
~ header files are entered in the program using the #include directive at the beginning of the program.
example if a program uses any function from the standard I/O library, then it should include the

- r file stdio.h as- .

=include<std io .h>

ly there are other header files like math.h, string.h, alloc.h that should be included when certa.in
functions are used.

- chapter we'll discuss about the input functions scanf() and getchar() and the output functions
) and putchar(). There are several other input-output functions that will be discussed in further

ers.

Ie method for taking the data as input is to give the value to the variables by assignment statement.
ample- .

- t basic = 2000;

ar ch = 'y';

this way we can give only particular data to the variabies.

ond method is to use the input function scanf(), which takes the input data from the keyboard.
- method we can give any value to the variables at run time. For output, we use the function

):

Conversion Specifications
tions scanf() and printf() make use of conversion specifications to specify the type and size

Each conversion specification must begin witfi a percent sign (%). Some conversion specification
)ven below-

a single character

------ -----

C in Depth

(
\

%d a decimal integer
%f a floating point number

%e a floating point number

%g a floating point number

%If long range of tloating point number (for double data typ~)

%h a short integer

%0 an octal integer

%x a hexadecimal integer

%i a decimal, octal or hexadecimal integer

%s a string

%u an unsigned decimal integer

The modifier h can be used before conversion specifications d, i, 0, u, x to specify short integer and
the modifier I can be used before them to specify a long integer. The modifier I can be used before
conversion specifications f, e, g to specify double while modifier L can be used before them to specify
a long double. For example %Id, %hd, %Lf, %hx are valid conversion specifications.

18

3.2 Reading Input Data
Input data can be entered into the memo!)' from a standard input device (keyboard). C provides the
scanf() library function for entering input data. This function can take all types of values (numeric,
character, string) as input. The scanf() function can be written as-

scanf("control string" , address I, address2,);

This function should have at least two parameters. First parameter is a control string, which contains
eonversion specification characters. It should be within double quotes. The conversion specification
characters may be one or more; it depends on the number of variables we want to input. The othel
parameters are addresses of variables. In the scanf() function at least one address should qe present
The address of a variable is found by preceding the variable name by an ampersand (&) sign. Thi!
sign is called the address operator and it gives the starting address of the variable name in memory
A string variable is not preceded by & sign to get .the address.

Some examples of scanf() function are as-
#include<stdio.h>
main ()
{

int marks;

scanf("%d",&marks) ;

In this example, the control string contains only one conversion specification character %d, which implie
that one integer value should be entered as input. This entered value will be stored in the variable mark~

#include<stdio.h>
main ()
{

char ch;

Input-Output in C

scanf("%c",&ch)~

19

ere the control string contains conversion specification Charac~r %c, which means that a single
aracter should be entered as input. This entered value will be tored in the variable ch. .

=':'nclude<s ~ .
-"'in (

float height;

scanf("%f",&height) ;

-ere the control string contains the conversion specili'-
int number should be entered as input. This entered Vale,

=':'~clude<stdio.h>

=:.=.':'n ()

char str[30]

scanf("%s",str) ;

which means that a floating
ired In the variable, height.

:s

- this example control string has conversion specification character %s implying that a string should
taken as input. Note that the variable str is not preceded by ampersand(&) sign. The entered string

-II be stored in the variable str.

ore than one value can also be entered by single scanf() function. For example
=~~clude<stdio.h>,

-;::' n (

int basic,da;

scanf("%d%d",&basic,&da);

the control string has two conversion specification characters implying that two integer values
uld be entered. These yalues are stored in the variables basic and~da. The data can be ent,ereo with

_- e as the delimiter as- .

1500 1200

~~=clude<stdio.h>

;:::n (

int basic;
f loa t . bra;

Here the control string has three conversi9n specifications characters %d, %f and %c means that on
integer value, one floating point value and one single characterLcan be entered as input. These value
are stored in the variables,basic, hra and grade. The input data can be entered as-

1500 200.50 A

When more than one values are input by scanf(), these values can be separated by whitespace charactel
like space, tab or newline (default). A specific character can also be placed between two conversio
specification characters as a delimiter.

20

char grade;

scanf ("%d . %f %c", &basic, &hra, &grade);

C in Depth

~include<stdio.h>

main(
(

irrt basic;
float hra;

scanf("%d:%f",&basic,&hra) ;

Here the delimiter is colon (). The input data can be entered as

1500:200.50

The value 1500 is stored in variable basic and 200.50 is stored in hra.

#include<stdio.h>
main(
(

int basic;
float hra;

Scanf("%d,%f",&basic,&hra) ;

Here the delimiter is comma (,). The input data can be entered as

1500, 200.40

#include<stdio.h>
main(

int day,mOn1"h,year;
int basic;

scanf("%d-%d-%d",&day,&month,&year) ;
scanf (" $ %d", &basic) ;

Input-Output in C

Here if the data is entered as-

21

24-5-1973

$3000

Then 24 is stored in var..~ble day, 5 is stored in variable month and 1973 is stored in variable year and
3000 is stored in variable basic.

If we include any spaces between the C'onversion specifications inside the control string, then they are
just ignored.
-include<stdio.h>
ain(

int x,y,z;

scanf("%d %d %d",&x,&y,&z);

If the data is entered as

12 34 56

Then 12 is stored in x, 34 is stored in y and 56 is stored in z.

3.3 Writing Output Data

Output data can be written from computer memory to the standard output device (monitor) uSIng printfO
library function. With this function all type of values (numeric, character or string) can be written as
output. The printf() function can be written as-

printf("control string", variable 1, variable 2,);

In this function the control string contains conversion specification characters and text. It should be
enclosed within'double quotes. The name of variables snould not be preceded by an ampersand(&) sign.
I the control string does not contain any conversion specification, then the variable names are not
-pecified. Some example of printf() function are as-
=lnclude<stdio.h>
=:ain (

printf ("C is excellent\n");

Output:

C is excellent

ere control string has only text and no conversion specification character, hence the o,utput is only
- xt.

=:nclude<stdio.h>
-ain(

int age;
printf("Enter your age ");
scanf("%d",&age) ;

int ba.sic=2000;

char ch='$';

char str[30];

C in Depth

#include<stdio.h>
main ()

Here control string has conversion specification character %s, implying that a string will be displaye
and. variable name str is a character array, holding the string which will be displayed.

printf("%sH,str) ;

#include<stdio.h>
main ()
{

printf("%c",ch) ;

#include<stdio.h>
main ()
(

Here control string has conversion specification character %f, which means that floating point numbe
will be displayed. The variable height has that floating point value which will be displayed as outpu1

In the above example, the control string has conversion specification character %c, means that a singl
character will be displayed and variable ch has that character value.

fl0at height=5.6;

printf("%fH,height);

In this example control string contains a conversion specification character %d, which implies that ar
integer value will be displayed. The variable basic has that integer value which will be displayed as output

printf("%dH,basic) ;

#include<stdio.h>
main ()
{

Here also printf does not contain any conversion specification character and.is used to display a message
that tells the user to enter his age.

#include<stdio.h>
main ()
{

22

Input-Output in C

int basic=2 000;
printf ("Basic Salary %d",basic) ;

23

}

Output:

Basic Salary = 2000

Here the control string contains text with conversion specification character %d. The text will be displayed
as it is, and the value of variable basic will be displayed in place of %d.

-include<stdip.h>
ain (

{

int b=l500;.
float h=200.50;·
char g= 'A' ;
printf~"Basic %d, HRA %f Grade %c",b,h,g) ;

}

Output:

Basic = 1500 , HRA = 200.500000 , Grade =' A

Here control string contains text with three conversion specification characters %d, %f and %c. %d
r . for integer value, %fis for floating point 'number and %c is for a single character. -
t.

=include<stdio.h>
ain(

int num=lO;
printf ("Octal equivalent of decimal %d %0" , n urn, n urn) ;

Output:

Octal equivalent of decimal 10 = 12

Ie rIere the second conversion specification character is %0 hence the octal equivalent of the decimal number
ored in the variable num is displayed.

=include<stdio.h>
:=ain(

int num=lO;
printf ("Hex equivalent of decimal %d %x", num, num) ;

Output:

~d Hex equivalent of decimal 10 = A

Here the second conversion specification character is % x hence the hexadecimal equivalent of the decimal
umber stored in the variable num is displayed.

chapter 2 we had studied about escape sequences. Here we'll see how we can use them in the printf
-tatement. The-most commonly used escape sequences used are '\n' and '\1'.

3.4 }:formatted Input And Output

%wd

Here 'd' is the conversion specification character for integer value and 'w' is an integer number specifying

Formatted input and output means Jhat data is entered and displayed in a particular format. Through
format specifications, better presentation of result can be obtained. Formats for different specifications
are as-

C in Depth

9 \ 11 \ 1978

She said, "I have to go".

%c\n",b,h,g) ;

%c\n",b,h,g);

will print

will print

Grade = A

%f\nGrade

HRA = 200.500000

Format For Integer Input

\
printf("9 \\ I I \\ 1978");

inlt b=1500;
float h=200.50;
char g='A';
printf ("Basic %d\tHRA =' %f\tGrade

printf("She said, \"1 have to go\". ");

int, b=1500
flo\p.t h=200. 50
cha~ g='A';
printf("Basic %d\nHRA

}

Output:

Basic = 1500

'\t' moves the cursor to the next tab stop. Similarly we can use other escape sequences also. For example
'\b' moves the cursor one position back, '\r' moves the cursor to the beginning of the current line
and '\a' alerts the user by a beep sound. '\v' moves the cursor to the next vertical tab position(first
column of the next line), and '\f' move the cursor to the'next page. '\v' and '\f' are effective only
when output is printed through a printer.

If we want to print characters like single quotes (,),double quotes (") or the backslash charcter
(\), then we have to precede them by a backslash character in the format string.

For example-

3.4.1

#includ~<stdio.h>

main (!)1

{

}

Output:

Basic = .1500
HRA ~. 200.500000

Grn~~JA .'

'\n; moves he cursor to the beginning of next line. Here we have placed a '\n' at the end of control
string also, it ensures that the output of the next program starts at a new line. '

#include<stdio.h>
main (I)
{

24

Input-Output in C 25

the ,maximum field width of input data. If the length of input is more than this maximum field width
then the values are not stored correctly. For example-

scanf ("%2d%3d", &a, &b);

(i) When input data length is less than the given field width, then the input values are unaltered and
stored in given variables.

Input-

6 39

Result-

6 is stored in a and 39 is stored in b.
(ii) When input data length is equal to the given 'field width, then the input values are unaltered and

stored in giv~n variables.

Input-

26 394

Result-

26 is stored in a and 394 is stored in b.
(iii) When input data length is more than the given field width, then the input values are altered and

stored in the variable as -

Input-

269 3845

Result-

26 is stored in a and 9 is stored in b and the rest of input is ignored.

3.4.2 Format For Integer Output

%wd

Here w is the, integer number specifying the minimum field width of the output data. If the length of '
the variable is less than the specified field width, then the variable is right jl~titied with leadin'g blanks.
For example -

printf("a=%3d, b=%4d", a, b); /
(i) When the length of variable is less than the width specifier.

Value of variables-

789

Output:

,
The width specifier of first data is 3 while there are only 2 digits in it, so there is one leading blank.
The width specifier of second data is 4 while there is only 1 digit, so there are 3 leading blanks.
(ii) When the length of the variable is equal to the width specifier

Value of variables-

263 1941

26

Output:

C in Depth

%d\n",a,b,c) ;
\nc = %4d\n",a,b,c);

.1
(iii) When length of variable is more than the width specifier, then also the output is printed correctly.

Value of variables-

2691 19412

Output:

#include<stdio.h>
main ()

int a=4000,b=200, c=15;
printf ("a = %d \nb. = %d \nc
printf("%a = %4d \n%b %4d

}

The output of the first printf would be
a = 4000 .

b = 200

c = 15

while the output of second printf would be

a = 4000

b = 200

c = 15

3.4.3 Format For Floating Point Numeric Input

%wf

Here 'w' is the integer number specifying the total width of the input data (including the digits before
and after decimal and the decimal itself). For example-

scanf("%~f%4f ", &x, &y);

(i) When input data length is less than the given width, values are unaltered and stored in the variables.

Input

5 5.9

Result

5.0 is stored in x and 5.90 is stored iny.

(ii) When input data length is equal to the given width, then the given values are unaltered and stored
in the given variables.

Input

5.3 5.92

'Put-Output in C 27

Result

5.3 is stored in x and 5.92 is stored in y

Iii) When input data length is more than the given width then the given values are altered and stored
in the given variables as-

put

5.93 65.87

esult

5.9 is storpc1 in x and 3.00 is stored in y.

.4.4 Format For Floating Point Numeric Output

w.of

ere w is the integer number specifying the total width of the input data and n is the number of digits
- be printed after decimal point. By default 6 digits are printed after the decimal. For examp!e-

printf("x = %4.1f, y = %7.2f ", x, y);

= the total length of the variable is less than the specified width 'w', then the value is right justified
. leading blanks. If the number of digits after decimal is more than 'n' then the digits are rounded

- Iue of variables-

8 5.9

utput:

ue of variables-

25.3 1635.92

tput:

- ue of variables

15.231

ut:

65.875948

__ .5 Format For String Input

ws

- e w specifies the total number of characters that will be stored in the string.

char str [8] ;

scanf ("%3s", str);

C in Depth

If the input is

Srivastava

only first three characters of this input will be stored in the string, so the characters in the string will
be-

'S', 'r', 'i', '\0'

The null character('\O') is automatically stored at the end.

3.4.6

O/ow.ns

Format For String Output

Here w is the specified field width. Decimal point and 'n' are optional. If present then 'n' specifies
that only first n characters of the string will be displayed and (w - n) leading blanks are displayed before
string.

(i) printf("%3s", "sureshkumar");

(ii) printt{"% IOs"; "reeta");

(iii) printf("%.3s", "sureshkumar ");

(iv) printf("% 8.3s", "sureshkumar ");

(8 - 3 = 5 leading blanks)

3.5 Suppression Character in scanf()

If we want to skip any input field then we specify * between the % sign and the conversion specification.
The input field is read but its value is not assigned to any address. This character * is called the sup-pression
character. For example-

scanf ("%d %*d %d", &a, &b, &c);

Input:

25 30 35

Here 25 is stored in 'a' , 30 is skipped and 35 is stored in the 'b'. Since no data is available for 'c'
so it has garbage value.

scanf("%d %*c %d %*c %d", &d, &m, &y);

Input:

. 31\/2003

Here 3 will be stored in d, then / will be skipped, 11 will be stored in m, again i will be skipped and
finally 2003' will be stored in y.

#include<stdio.h>
main ()

int a,b,c;
printf("'Enter three numbers :");

rput-Outputin C

scanf("%d %*d %d",&a,&b,&c);
priiltf("%d %d %d",a,b,c);'

tput:

::- ter three numbers : 25 30 35

25 35 25381

variable c has garbage value.

29

.6 Character I/O

..1 getchar () and putchar()

e macros getcharO ,!nd putchar() can be used for character lIO. getchar() reads a single character
- m the standard input. putchar() outputs one character at a time to the standard output.
=~_clude<stdio.h>

=:'n ()

char Chi
printf ("Enter a character ");
ch=getchar() ;
printf ("The entered character is ");
putchar(ch) ;

ut:

- - r a character : B

'" entered character is : B

Exercise
- me stdio.h is included in all programs.

"define MSSG "Hello World\n"
main ()
{

printf(MSSG) ;

_ main (
{

printf("Indian\b is great\n");
printf("New\rDelhi\n") ;

(3) main (
(

int a=l1;
priutf("a
printf("a.
printf("a

%d\t",a) ;
%o\t",a) ;
%x\n",a) ;

main (
{

main (\
{

main ()
{

C in Depth

%u\n",a,b) ;
b=50000;

%d, b =

int a=5·0000;
unsigned int
printf("a

int a=98;
char ch=' c' ;
printf("%c, %d\n",a,ch);

float al,bl,a2,b2,a3,b3;
al=2;
bl=6.8;
a2=4.2;
b2=3.57;
a3=9.82;
b3=85.673;
printf("%3.1f,%4.2f\n",al,bl) ;
printf("%5.1f,%6.2f\n",a2,b2) ;
print~("%7.1f,%8.2f\n",a3,b3) ;

float D=123. 1265;
printf("%f\t",b) ;
printf("%.2f\t",b) ;
printf("%.3f\n",b) ;

int a=625,b=2394,c=12345;
printf("%5d, %5d, %5d\n",a,b,c);
printf("%3d, %4d, %5d\n",a,b,c);

char Chi
printf("Enter a character:");
scanf("%c",&ch);
printf("%d\n",ch) ;

main(
{

main(
{

main ()
{

Input-Output in C 31

, .

(lO)main()
(

printf("%10s\nU,"India U) ;
printf("%4s\n U,"India U) ;
printf(".2s\n U,"India U) ;
printf("%5.2s\n U,"India U) ;

Answers
/

625, 2394, 12345
625, 2394, 12345

a == -15536, b==50000 /
/

The value 50000 is outside the range of int data type.
) This program enters a character and prints its ASCII value.
) 123.126503 123.13 123.127

-)

Hello World
India'is great .

Delhi

\b takes the cursor to the previous position of current line, \r takes the cursor to the beginning
of current line, \n takes the cursor to the beginning of next/line.

3) a==lla==13a==b/
)

(I)

()

b, 99·

2.0,6.80
4.2, 3.57

9.8, 85.67

0) ~Pl! iilndia
India
In

In

Chapter 4

Operators find Expressions

An operator specifies an operation to be performed that yields a value. The variables, constants can
be joined by various operators to form an e~pression. An operand is a data item on which an operator
acts. Some operators require two operands, while others act upon only one operand. C includes a large
number of operators that fall under several different categories, which are as-

1. Arithmetic operators

2. Assignment operators .
3. Increment and Decrement operators
4. Relationaloperators.
5. Logical operators
6. Conditional operator

7. Comma operator
8. sizeof operator
9. Bitwise operators

10. Other operators

4.1 Arithmetic Operators

Arithmetic operators are used for numeric calculations. They are of two types -

. 1. Unary arithmetic operators

2. Binary arithmetic operators

4.1.1 Unary Arithmetic Operators

Unary operators require only one operand. For example-

+x -y

Here '-' changes the sign of the operand y.

4.1.2. Binary Arithmetic Operators

Binary operators require two operands. There are five binary arithmetic operators-

Operators and Expressions

Operator Purpose

+ addition

- subtraction

* multiplication

/ division

% gives the remainder in integer division

33

% (modulus operator) cannot be applied with floating point operands. There is no exponent operator
in C. However there is a library function pow() to carry out exponentiation operation.

_ ote that unary plus and unary minus operators are different from the addition and subtraction operators.

4.2 Integer Arithmetic
When both operands are integers then the arithmetic operation with these operands is called integer
arithmetic and the resulting value is always an integer. Let us take two variables a and b. The value'
of a = 17 and b = 4, the results of the following operations are-

Expression Result

a+b 21

a-b 13'

a*b 68

alb 4 (decimal part truncates)

a%b 1 (Remainder after integer division)

After division operation the decimal part will be truncated and result is only integer part of quotient.
After modulus operation the result will be remainder part of integer division. The second operand"must
be nonzero for division and modulus operations. /
/*P4.1 Program to understand the integer arithmetic operation* /
~include<stdio.h>

ain ()
{

int a=17,b=4;
p r i n t f (" Sum = %d \ n" , a +b) ;
ptintf("Difference = %d\n",a-b);
printf ("Product = %d\n", a*b);
printf("Quotient = %d\n",a/b);
printf ("Remainder = %d\n", a%b) ;

}
/

Output:

Sum = 21

Difference = 13

Product = 68

Quotient = 4

Remainder =

34 C in Depth

4.3 Floating-Point Arithmetic
When both operands are of float type then the arithmetic operation with these operands is called floaring
point arithmetic: Let us take two variables a and b. The value of a = 12.4 and b = 3.1 the result~

of the following operations are as-

Expression Result
--

a+b 15.5

a-b 9.3

a*b 38.44

a I b 4.0

The modulus operator % cannot be used with floating point numbers.
/*P4.2 Program to ul)derstand the floating point arithmetic oper<:ltion *
#include<stdio.h>
main ()

float a=12.4,b=3.8;
p r i n t f (" Sum = %. 2 f \ n" , a +b) ;
printf ("Difference = %.2f\n", a-b) ;
printf ("Product = %. 2f\n" , a *b) ;
printf("a/b.~ %.2f\n",a/b);

}

Output

_Sum = 16.20

Difference = 8.60

Product = 47.12

alb = 3.26

4.4 Mixed Mode Arithmetic

When one operand is of integer type and the other is of floating type then the arithmetic operation wi1
these operands is known as mixed mode arithmetic and the resulting value is float type.

If a = 12, b = 2.5

Expression Result

a+b 14.5

a-b 9.5

I
a*b 30.0

a I b 4.8
\

I
i

Sometimes mixed mode arithmetic can help in getting exact results. For exm'nple the result of expressi<
5/2 will be 2, since integer arithmetic is applied. If we want exact result we can make one of the operan
float type. For example 5.0/2 or 5/2.0, both will give result 2.5.

Operators and Expressions

.5 Assignment Op~rators

35

.-\ value can be stored in a variable with the use of assignment operator. This assignment operator "
= ", is used in assignment expressions and assignment statements.

e operand on the left hand side should be a variable, while the operand on the right hand side can
any variable, constant or expression. The value of righ~ hand operand is assigned to the left hand

perand. Here are some examples of assignment expressions-

x = 8 /* 8 is assigned to x*/

y = 5 /* 5 is assigned to y*/

s = x+y-2 /* Value of expression x+y-2 is assigned to s*/

y = x /* Value of x is assigned to y*/

x = y /* Value of y is assigned to x*/

The value that is being assigned is considered as value of the assignment ex·pression. For example
= 8 is an assignment expression whose value is 8.

Ie can have multiple assignment expressions also, for example

x = y = z = 20

Here all the three variables x, y, t will be assigned value 20, and the value of the whole expression
'ill be 20.

If we put a semicolon after the assignment expression then it becomes an assignment statement.

For example these are assignment statements-

x = 8;
y = 5;

s = x+y-2;

x = y = z = 20;

hen the variable on the left hand side of assignment operator also occurs on right hand side"'then
e can avoid writing the variable twice by using compound assignment operators. For example-

x = x + 5

'1 can also be writt-en as-

x += 5

n
,s

.
Here += is a compound assignment operator.

Similarly we have other compound assignment operators-

x -=5 is equivalent to x = x - 5

y*=5 is equivalent to y = y* 5

surTI·/=5 is equivalent to sum = sum / 5

k%= 5 is equivalent to k = k % 5

4.6 Increment And Decrement Operators

C has two useful operators increment (++) and decrement (- -). These are unary operators because
they operate on a single operand. The increment iperator (++) increments the value of the variable
by 1 and decrement operator (- -) decrements the value of the variable by 1.

C in Depth

++x is equivalent to x = x + 1

- -x is equivalent to x = x-I

These operators should be used only with variables; they can't be used with constants or expressions.
For example the expressions ++5 or ++(x+y+z) are invalid.

These operators are of two types-

1. Prefix increment / decrement - operator is written before the operand (e.g. ++x or - -x)

2. Postfix increment / decrement - operator is written after the operand (e.g. x++ or x - -)

4.6.. 1 Prefix Increment / Decrement

/*P4.3 Program to understand the use of prefix increment / decrement *
#include<stdio.h>
main()
{

Here first the value of variable' is incremented / decremented then the new value is used in the operation
Let us take a variable x whose value is 3.

The statement y = ++x; means first incremenf the value of x by 1, then assign the value of x to y
This single statement is -equivalent to these two statements-

x = x+l;

Y = x;

Hence now value of x is 4 and value of y is 4.

The statement y = - -x ; means first decrement the value of x by 1 then assign the value of x to)

This statement is equivalent to these two' statements.

x = x~l;

Y = x;

Hence now value of x is 3 and value of y is 3.

int x=8;
printf("x
printf ("x
printf ("x
printf ("x
printf ("x

%d\t",x);
%d\t",++x); /*prefix increment*/
%d\ t" ,x) ;.
%d\t", - --x); /*prefix decrement*/
%d\n",x);

}

Output:

x = 8 x = 9 x = 9 x = 8 x = 8

In the second printf statement, first the value of x is incremented and then printed; similarly in the fOUl
printf statement first the value of x is decremented and then printed.

4.6.2 Postfix Increment / Decrement

Here first the value of variable is used in the operation and then increment/decrement is perform<
Let us take a variable whose value is 3.

The statement y = x++; means first the value of x is assigned to y and then x is incremented. T
statement is equivalent to these two statements-

Operators and Expressions 37

y = x;
x = x+I;

Hence now value of x is 4 and value of y is 3.

The statement y = x- -; means first the value ofx is assigned to y and then x is decremented.

This statement is equivalent to these two statements-

. y = x;
x = x-I;

Hence now value of x is 3 and value of y is 4.
P4.4 Program· to understand' the use of postfix i Tlcrement/decrement /

:include<stdio.h>
ain ()

{

int x:8;
printf("x
printf ("x
printf("x
printf("x
printf ("x

%d\n" ,x) ;
%d\t",x++); /*postfix increment*/
%d\t",x);
%d\t" ,;.- -); /*postfix decrement*/
%d\n" ,x) ;

}

Output:

x = 8 x = 8 x = 9 x = 9 x = 8

h

:i.

15

the second printf statement, first the value of x is printed and then incremented; similarly in the fourth
rintf statement first the value of x is printed and then decremented.

.7 Relational Operators
elational operators are used to compare values of two expressions depending on their relations. An

expression that contains relational operators is called relational expression. If the relation is true "then
e value of relational expression is 1 and if the relation is false then the value of expression is O. The
lational operators are-

Operator Meaning

< less. than
<= less than or equal to

- - . equal to
!= Not equal to

> Greater than'
>= Greater than or equal to

_et us tak.e· two variables a = 9 and b = 5, and form simple relational expressions with them-

C in Depth

Expression Relation Value of Expression

a < b False 0

a <= b False 0

a= =b False 0

a != b True 1

a>b True 1

a >= b True 1

a==O False 0

b!=O True 1

. a>8 True 1

2> 4 False 0

The relational operators are gene~IY used in if.. .else construct and loops. In our next program we'll
use the if statement tomustrate the use of relational operators. The if control statement evaluates an
expression, and if this exp-res~ is true(non zero) then the next statement is executed, otherwise the
~ext st.atement is ~kipped. .Jhe details ~f if statement are discussed in chapter 5. ·Here we have used
It to gIve you an Idea of how the relatIOnal operators are used.

/*P4.5 Program to understand the use of relational operators* /
#include<stdio.h>
main(

int a,b;
printf ("Enter values for a and b ") ;
scanf("%d%d",&a,&b) ;
if(a<b)

printf ("%d is/less than %d\n", a, b) ;
if(a<=b) ;/

printf ("%d is less than or equal to %d\n", a/ b) ;
if (a==b)

printf("%d is e/qual to %d\n",a,bY;
if(a!=b) /

printf("%d lS not equal to %'d\n",a,b);
if(a>b)

printf("%d is greater than %d\n",a,b);
if (a>=b)

printf("%d is great&f" than or equal to %d\n",a,b);
}

Output:

Enter values fo~ a anfr1> 12 7
12 is not equal to 7 .

12 is greater than 7

12 is greater than or equal to 7

It is important to note that the assignment operator(=) and equality operator(= =) are entirely differe
Assignment operator is used for assigning values while equality operator is used to compare t

Operators and Expressions 39

"xpressions. Beginners generally confuse between the two and use one in the place of another, and this
eads to an error difficult to find out. For example if in the above program we use '='instead of '=

= , then we'll get wrong output.

if(a = b)

printf("%d is equal to %d\ri" ,a,b);

ere a = b is treated as an assignment expression, so the value of b is assigned to variable a, and the
'Blue of the whole expression becomes 7 which is non-zero, and so the next statement is executed.

.8 Logical Or Boolean Operators
expression that combines two or more expressions is termed as a logical expression. For combining

~ e e expressions we use logical operators. These operators return 0 for false and 1 for true. The operands
y be constants, variables or expressions. C has three logical operators.

Operator Meaning

&& AND

I I OR

! NOT

ere logical NOT is a unary operator while the other two are binary operators. Before studying these .
erators let us understand the concept of true and false. In C any non-zero value is regarded as true
d zero is regarded as false .

.8.1 AND (&&) Operator

This operator gives the net result true if both_ the conditions are true, otherwise the result is false.

Boolean Table

Condition! Condition2 . Result

False False False

False True False

True False False

)'rue True True
/

r

<-.

o

Let us take three variables a = 10, b = 5, c = 0

uppose we have a logical expression-

(a = = 10) && (b < a)

Here both the conditions a = = 10 and b < a are true, and hence this whole expression i's true. Since
the logical operators return 1 for true hence the value of this expression is 1.

. Expression Result Value of expression

(a= =10) && (b>a) true && false false 0

(b>=a) && (b= =3) false && false false 0

a && b true && true true 1

a && c true && false false 0

This operator gives the net result false, ifboth the conditions have the value false, otherwise the result
is true.

In the last two expressions we have taken only variables. Since nonzero values are regarded as true
and zero value is regarded as false, so variables a and b are considered true and variable c is considered
false.

4.8.2 OR (I I) Operator

Boolean Table

Condition! Condition2 Result

False False False
False True True
True False True
True True True

C in Deptlr

Let us take. three variables a = 10, b = 5, c =.0

Consider the logical expression-

(a >= b) I I (b > 15)

This gives result true because one condition is true.

This is a unary operator and it negates the value of the condition. If the value of the condition is false
then it gives the result true. If the value of the condition is true then it gives the result false.

Boolean Table

Let us take three variables a = 10, b = 5, c = °
Suppose we have this logical expression-

! (a = = 10)

The value of the condition (a= =10) is true. NOT operator negates the value of the condition. Hence
the result is false.

4.8.3

Expression

a I I b
a I I c
(a<9) I I (b>10)
(b!=7) I I c

Not (!) Operator

true I I true
true I I false
falsel I false
true I I false

Condition

False

True

Result

true
true
false
true

Result

True
False

Value of expression

1

1

°1

Operators and Expressions

Expression Result Value of expression

!a !true false 0

!c !false true I

!(b>c) !true false 0
!(a && c) !false true 1

..

.9 Conditional Operator

. 41

onditional operator is a ternary operator (? and:) which requires three expressions as operands. This
written as-

TestExpression ? expression1 : expression2

ly the TestExpression is evaluated.

If TestExpression is true(nonzero), then expression1 is evaluated and it becomes the value of the
overall conditional expression.

If TestExpression is false(zero), then expression2 is evaluated and it becomes the vaJue of overall
conditional expression.

example consider this conditional expression

a>b?a:b

.:::.ere first the expression a > b is evaluated, if the value is true then the value of variable a becomes
_ value of conditional expression otherwise the value'ofb becomes the value of conditional expression.

- ppose a = 5 and b = 8, and we use the above conditional expression in a statement as-

max = a > b ? a : b;

- the expression a > b is evaluated, since it is false so the value of b becomes the value of conditional
=xpression and it is assigned to variable max. - . ,

our next example we have written a conditional statement by putting a semicolon after the conditional
ression.

a < b ? printf("a is smaller") : printf("b is smaller");

in e the expression a < b is true, so the first printf function is executed.

~P4.6 Program to print the larger of two numbers using conditional operator

;- clude<stdi~.h>

--in ()

int a., b! max;
printf ("Ente:r; values
scanf("%d %d",&a,&b);
max = a>b ? a :"b;
printf("Larger of %d

for a and b ");

I*ternary operator* I
and %d is %d\n", a, b,max);

tput:

Enter values for a and b 12 7
Larger of 12 and 7 is 12

The comma operator (,) is used to permit different expressions to appear in situations where only
one expression would be used. The expressions are separated by the comma operator. The separated
expressions are evaluated from left to right and the type and valut of the rightmost expression is the
type and value of the compound expression.

For example consider this expression-

a = 8, b = 7, c = 9, a+b+c

Here we have combined 4 expressions. Initially 8 is assigned to the variable a, then 7 is assigned to
the variable b, 9 is assigned to variable c and after this a+b+c is evaluated which becomes the value
of whole expression. So the value of the above expression is 24. Now consider this statement-

sum = (a = 8, b = 7, c = 9, a+b+c);

Here the value of the whole expression on right side will be assigned to variable sum i.e. sum will be
assigned value 24. Since precedence of comma operator is lower than that of assignment operator hence
the parentheses are necessary here. The comma operator helps make the code more compact, for example
without the use of comma operator the above task would have been done in 4 statements.

a = 8;
b = 7;

c = 9;

sum = a-hb+c

4.10 Comma Operator

C in Depth

/*P4.7 Program to understand the use of comma operator */
#include<stdio.h>
main:()
{

in t a , b , C , sum;
sum (a=8,b=7,c=9,a+b+c);
printf("Sum %d\n",sum);

}

Output:

Sum =24

/ * . P4 . 8 Program to interchange the value of two variables using comm
operator*/
#include<stdio.h>
main(

int a=8, b=7, temp;
printf("a = %d, b %d\n",a,b);
tem,P=a, .a=b, b=temp;
printf("a %d, b = %d\n",a,b);

}

Output:

a=8,b=7

a= 7 , b = 8

Operators and Expressions • I •--, 43

-
The comma operator is also used in loops, we'll study about that in the next chapter.

4.11 sizeo/O,perator
i

sizeof is an unary operator. This operator gives the size of its operand in te;ms of bytes. The operarid
can be a variable, constant or any datatype(int, float, char etc). For example sizeof(int) gives the bytes
occupied by the int datatype i.e.J

f*P4.9 Program to understand the sizeof operator* /
#include<stdio.h>
main()
{

int var;
printf . ("Size of int %d" ,sizeof (int)) ;
printf("Size of float %d",sizeof(float));
p do n t f (" S i z e 0 f va r = %d" , s i z e 0 f (va r)) ;
printf("Size of an integer constant = %d",sizeof(45));

}

Output:

Size of int = 2

Size of float = 4

Size of val' = 2

Size of an integer constant = 2

Generally sizeof operator is used to make portable programs i.e. programs that can be run on different
machines. For examplejf we write our program assuming int to be of 2 bytes, then it won't run correctly
on a machine on which int is of 4 bytes. So to make general code that can run on all machines we
can use sizeof operator.

Bitwise Operators
C has the ability to support the manipulation of data at the bit level. Bitwise operators are used for
operations on individual bits. Bitwise operators operate on integers only. The bitwise operators are as-

Bitwise operator Meaning

& bitwise AND

I bitwise OR
~ one's -complemen!

« left shift
» " right shift

/\ bitwise XOR

These bitwise operators are discussed in detail in chapter 13.

Other operators
There are rriany other operators that ;we'll study in further chapters, The last operator that we'll take
up in this chapter is the type cast ~perator. Before stlldying that we'll discuss about type conversions
in C.

.. .,

C in Depth

I
Explicit type conversion

Type conversion
,in assignments

I
Automatic binary .

conversion

I
Implicit type converslOu

Ir---I----,

Automatic type
conversion

I

Type Conversion

I
Automatic unary

conversion

4.12
C provides the facility of mixing different types of variables and constants in an expression. In these

. types of operations data type of one operand is converted into data type of another operand. This is
known as type conversion. The different types of type conversion are-

Type Conversion

I

Implicit type conversions are done by the compiler while the explicit type conversions are user definec
conversions.

4.12.1 Implicit Type Conversions

These conversions are done by the C compiler according to some predefmed rules of C language. Thl
two types of implicit type conversions are automatic type conversions and type com ersion in assignment~

4.12.2 Automatic Conversions

Automatic unary conversions

All operands of type char and short will be converted to int before any operation. Some comPilers convel
all float operands to double before any operation.

Automatic binary conversions

The rules for automatic binary conversions are as-
(i) If one operand is long double, then the other will be .converted to long double, and the result wi

be long double,
(ii) Otherwise if one operand is double, then the other will be converted to double and the result wi

be double,
(iii} Otherwise if one operand is float, the other will be converted to float and the result will be flo::
(iv) Otherwise if one operand is unsigned long int, then other will be converted to. UJisigned long il

and the result will be unsigned long int.
(v). Otherwise if one operand is long int and other is unsigned int

(a) If long int can represent all the values of an unsigned int, then unsigned int will be convert(
to long int and the result will be long int,

(b) 'Else both the operands will be converted to unsigned long int and the result will be unsign(
long int,

(vi) Otherwise if one operand is long int, then the other will be converted to long int and the res\
will be long int.

Operators and Expressions

ii) Otherwise if one operand is unsigned int, then the other will be converted to unsigned int and the
result will be unsigned int.

mi) Otherwise both operands will be int and the result will be int.

we leave aside unsigned variables, then these rules are rather simple and can be summarized by
- igning a rank to each data type. Whenever there are two operands of different data types the operand
'th a lower rank will be converted to the type of higher rank operand. This is called promotion of
ta type.

I long double I Highest rank

~
~
d=J

Lowest rank

J

t .,

4.12.3 Type Conversion In Assignment

If the types of the two operands in an assignment expression are different, then the type of the right
hand side operand is converted to the type of left hand operand. Here if the right hand operand is of
lower rank then it will be promoted to the rank of left hand operand, and if it is of higher rank then
it will demoted to the rank of left hand operand. '"

ome consequences of these prOmotions and demotions are-

1. Some high order bits may be dropped when long is converted to int, or int is converted to short
int or char.

2. Fractional part may be truncated during conversion of float type to lnt type.

3. When double type is converted to float type, digits are rounded off.

4. When a signed type is changed to unsigned type, the sign may be dropped.

S. .When an int is converted to float, or float to double there will be no increase in accuracy or precision.

It / * P4 .10 Program to understand the type conversion in assignment· /
#include<stdio.h>
main(

d

lt

char c1,c2;
int il,i2;
fl'Qat f1, f2;
c1='H';
i1=80. 56; /*Demotion: float converted to int, only 80 .assigned to il * /
f1=12.6;

c2=i1;
i2=f1;
1 *Now c2
12*1
printf("c2
f2=i1;
i2=c1;
I*Now i2
printf("f2

I*Demotion
I*Demotion·

has character

%c, i2
I*Promotion
I*Promotion

contains ASCII

%.2f, i2

C ill Depth

int converted to char* 1
float converted to int * 1
wi th ASCII value 80, i2 is assigned value

%d\n",c2,i2);
int converted to float * 1
char converted to' int * 1

value of character 'Hi which is 72 * 1
%d\n",f2,i2);

}

Output:
c2 = P, i2 == 12
f2 = 80.00, i2 =' 72

4.12.4 Explicit Type Conversion Or Type Casting

There may be certain situations where implicit conversions may not solve our purpose. For example

float z;
int x = 20, y = 3;
z ~ x/y;

The value of z will be 6.0 instead of 6.66.

In these types of cases we can specify our own co~versions known as' type casting or coercion. Thi:
is done with the help of cast operator. The cast operator is a unary operator that is used for convertinl
an expression to a particular data type temporarily. The expression can be any constant or variable

The syntax of cast operator is-

(datatype) expression

Here the datatype along with the parentheses is called the cast operator.,

So if we write the above statement as-

z = (float)x/y;

Now the value of z will come out be 6.66. This happens because the cast operator (float) temporaril
converted the int variable x into float type and so floating point arithmetic took place and fraction
part was not lost.

Note that the cast operator changes the data type of variable x only temporarily for the evaluation I

. this expression, everywhere else in the program it will be an int variable only.

1 *P4. 11 Program to illustrate the use of cast operator* 1
#include<stdio.h>
main()
{

int x=5,y=2;
float p,q;
p=x/y;

printf("p = %f\n",p);
q=(float)x/y;
printf("q = %f\n",q);

Operators and Expressions

Output:

p = 2.000000

q = 2.500000

47

(float)20/3
(float)(20/3)

(double)(x +y -z)
(double)x+y-z

Y
il

Initially the expression x/y.is evaluated, both x and yare integers so according to integer arithmetic
after division, decimal value is truncated and result is integer value 2. This value will be assigned to
p but p is a float variable so according to implicit type conversion in assignment the integer value 2
will be converted to float and then assigned to p. So finally the value of p is 2.0

When cast operator is used, floating point arithmetic is performed hence the value of q is 2.5

Here are some other examples of usage of cast operator-

(int)20.3 constant 20.3 converted to integer type and fractional part is 10st(Result
20)
constant 20 converted to float type, and then divided by 3 (Result 6.66)

First 20 divided by 3 and then result of whole expression converted to float
type(Result 6.00) .

Result of expression x+y-z is converted' to double
First x is converted to double and then used in expression

.13 Precedence And Associativity Of Operators
:01" evaluation of expressions having more than one operator, there are certain precedence and associativity

es defined in C. Let us see what these rules are and why are they required.

Consider the following expression

2 + 3 * 5

ere we have two operators- addition and multiplication operators. If addition is performed before
tiplication then result will be 25 and if multiplication is perfoffi1ed before. addition then the result

- be 17.

C language, operators are grouped together and each group is given a precedence level. The precec1ence
f all the operators is given in the following table. The upper rows in the table have higher precedence

it decreases as we move down the table. Hence the operators with precedence level 1 have highest
edence and with precedence level 15 have lowest precedence: So whenever an expression contains

re than one operator, the operator with a higher precedence is evaluated first. For example in the
'e expression, multiplication will be performed before addition since multiplication operator has higher
dence than the addition operator.

C in Deptb

Operator Description Precedence level Associativity

() Function call

[] Array subscript 1 Left to Right

-7 Arrow operator

Dot operator

+' Unary plus

- Unary minus
++ Increment

- - Decrement

! Logical NOT 2 Right to Left

- One's complement

* Indirection

& Address \

(datatype) Type 'cast

sizeof Size in bytes

* Multiplication

/ Division 3 Left to Right
% Modulus
+ Addition 4 Left to Right

- Subtraction
« ~eft shift 5 Left to Right
» Right shift
< Less than

<= Less than or equal to 6 Left to Right
\

> Greater than ,.

>= Greater. than or equal to
- - Equal to 7 Left o Right

!= Not equal to

& Bitwise AND 8 Left to Right
/\ Bitwise XOR 9 Left to Right

I Bitwise OR 10 Left to Right

&& Logical AND 11 ~ft to Right

1 I Logical OR 12 Le o Right

? : Conditional operator 13 Right to Left

=
*= /= %=

+= -= Assignment operators 14 - to Left
~

&= /\= 1=
«= »=

Comma operator 15 '" to Right,

Operators and Expressions 49

Let us take some expressions and see how they will be evaluated
(i) x = a+b < c

Here + operator has higher precedence than < and =, and < has more precedence than =, so
first a+b will be evaluated, then < operator will be evaluated, and at last the whole value will be
assigned to x. If initial values are a = 2,b = 6, c = 9, then final value of x will be 1.

(ii) x *= a + b
Here + operator has higher precedence than *=, so a+b will be evaluated before compound
assignment. This is interpreted as x = x*(a+b) and not as x = x*a+b.
If initial values are x = 5, a = 2, b = 6, then final value of x will be 13.

(iii) x = a<=b II b==c
Here order of evaluation of operators will be <=, = =, 11,=. If initial values are a = 2, b = 3, c
= 4, then final value of x will 'be 1.

In the above examples we have considered expressions that contain operators having different precedenc-e
levels. Now consider a situation when two operators with the same precedence occur in an expression.
For example- - ,

5 + 16 / 2 * 4

Here / and * have higher precedence than + operator, so they will be evaluated before addition. But
I and * have same precedence, so which one of them will be evaluated first still remains a problem.
If / is evaluated before *, then the result is 37 otherwise the result is 7. Similarly consider this expression-

20 - 7 - 5 - 2 -1

Here we have four subtraction operators, which of course have the same precedence level. If we decide
to evaluate from left to right then answer will be 5, and if we evaluate from right to left the answer
will be 17. '

To solve these types of problems, an associativity property is assigned to each operator. Associativity
of the operators within same group is same. All the operators either associate from left to right or from
right to left. The associativity of all operators is also given in the precedence table. Now again consrder
the above two expressions-

5 + 16 / 2 *4

ince / and * operators associate from left to right so / will be evaluated before * and the correct result
37.

20 - 7 - 5 - 2 -1

The subtraction operator associates from left to right so the value of this expression is 5,

The assignment operator associates from right to left. Suppose we have a multiple assignment expression
e this-

x=y=z=5

-ere initially the integer value 5 is assigned to variable z and then value of expression z = 5 is assigned
variable y. The value of expression z = 5 is 5, so 5 is assigned to variable y and now the value

f expression y = z = 5 becomes 5. Now value of this expression is assigned to x and the value of
hole expression x = y = z = 5 becomes 5.

-:De conditional operator also associates form fight to left. Consider this expression

x?y:a?b:c

50 C in Depth

-•....,

Since the conditional operator is right associative so this expression is considered as:

x ? y : (a ? b : c)

If x is non zero then the value of this expression will be equal to y. If x is zero then value of thi~

expression will be equal to the value of expression (a ? b : c) i.e. equal to b if a is non zero and equa
to c if a is zero.

4:14 -Role Of Parentheses- In Evaluating Expressions
.- ~ .

If we want to change the order of precedence of any operation, we can use parentheses. AccordinJ
to the parentheses rule, all the operations that are enclosed within parentheses are performed first.

For example in expression 24/2+4, division will take place before addition according to precedence rul(
but if we enclose 2+4 inside parentheses then addition will .be performed first: So the value of expressio
24/(2+4) is 4.

For evaluation of expression inside parentheses same precedence and associativity rules apply. Fe
example- .

(22 - 4) 1 (2+4*2-1)

Here inside parentheses multiplication will be performed before addition.

There can be nesting of parentheses in expressions i.e. a pair of parentheses can be enclosed with
another pair of parentheses. For example- .

(4* (3+2))/10

In these cases, expressions within innermost parentheses are always evaluated first, and then ne
innermost parentheses and so on, till outermost parentheses. After evaluation of all expressions witl~

par~ntheses, the remaining expression is evaluated as usual. In the above expression .3+2 is evaluat
first and then 4*5 and then 20/1 O.

Sometimes in complex expressions, parentheses are used just to increase readability. For example comp:
the following two expressions-

x = a!=b && c*d>=m%n

x = (a!=b) && ((c*d) >=(m%n))

These two expressions are evaluated in the same way but the operations performed in second one
clearer. .

Let us take some expressions and evaluate them according the precedence, associativity and parenthf
rules.

a = 8, b = 4, c = 2, d = 1, e = 5 , f = 20

a+ b~(c+d)*3 % e+f/9

n

lr

• erators and Expressions

a +b-(c+d) * 3% e

SIb
2

1'-1 lW

6th

7th

10

a =17, b = 5, c = 6, d = 3, e = 5

a % 6 - b I 2 + (c * d - -5) I e

+ f / 9
4th I

2

/

51

in

xt

in
~d

lre

,es

a % 6 - b / 2 + (c * d-5)/e

3rd I I 4th I Il~
1 f6th 2nd

1
3

5th

7th J
5

a = 4, b = 5, C = 6, d = 3, e = 5, f = 10

a*b-c/d<e+f

a*b-c/d<e+f

~~~rO r 1

~
1

5th

o
a = 8, b = 5, c = 8, d = 3, e = 65, f = 10, g = 2, h = 5, k = 2

a-b+c/d== elf - g+h %k



52

a- b+ c/d= e/ f - g+h %k

I 4th I I 1st I I ~d I II 3td I
3 t

5th J

. 8_th ---JJ
1

a = 8, b = 3, C = 2, d = 3, e = 2, f = 11

a - b I I ( a- b * C ) + d && e - f % 3

C in Depth

a - -b

14th I
IIC a-b *c

I LLS! I

~

) + d && e - f % --3

I L3~d I

~-

8th

1

The following program prints the results of above expressions
/*P4,12 Program to evaluate some expressions* /
main ( )
{

int a,b,c,d,e,f,g,h,k;_
a=8,b=4,c=2,d=1,e=S~f=20;

printf("%d\t-,a+b-(c+d)*3%e+f/9) ;
a=17,b=S,c=6,d=3,e=S;
printf("%d\t-,a%6-b/2+(c*d-S)/e) ;
a=4,b=S,c=6,d=3,e=S,f=lO;
printf("%d\t-,a*b-c/d<e+f) ;
a=8,b=5,c=8,d=3,e=6S,f=10,g=2,h=S,k=2;
printf("%d\t~,a-b+c/d==e/f-g+h%k);
a=8,b=3,c=2,d=3,e=2,f=11;
printf("%d\n-,a-bl I (a-b*c)+d&&e-f%3);

Output:

10 5 o



Operators and Expressions S3

4.15 Order Of Evaluation Of Operands
C does not specify the order in which the operands of an operator are evaluated. For example consider '
the expression-

y = (++x) + (- -x); /*Assume value of x is 5*/

Here the two operands of the addition operator are (++x) and (- -x). These two operands have to be
added and then the result has to be assigned to variable y. Before addition, these two operands will

e evaluated. Now if the first operand(++x) is evaluated first then y will be assigned yalue 11, while
if second operand(- -x) is evaluated first then y will be assigned the value 9. Since C is silent on
such controversies, the answers may .vary on different compilers so it is better to avoid such -type of
expressions.

There are four exceptional operators where C clearly specifies the order of evaluation of operands. These
operators are logical AND( && ), logical ORe I I ) , conditional (? : ) and comma operator( , ). In.... .
ail these cases the operand on th~ left side is evaluated first.

In the case of logical AND and logical OR operators, sometimes there is no need to evaluate second
operand. In && operator, if the first operand evaluates to false(zero), then second operand is not evaluated
and in the case of I I operator if the first operand evaluates to true(non zero) th~n second operand is
not evaluated.

Exercise
Assume stdio.h is included in all programs.
(1) main ( )

{

int a=-3;
a·= - a - a + ! a ;
printf("%d\n·,a);

(2) main (
{

int a=2,b=1,c,d;
c=a<b;

'd=(a>b)&&(c<b) ;
printf("c = %d, d

3) main (
{

%d\n·,c,d) ;

int a=9,b=15,c=16,d=12,e,f;
e=! (a<bllb<c);
f=(a>b)? a-b:b-a;
printf("e'= %d, f %d\n·,e,f);

main(
{

int a=5;
a=6 ;



a=a+5*a;
printf ("a

(5) main (

int a=5,b=5;
printf ("%d,
printf ("%d,
printf ("%d,
printf ("%d,

(6) main(
{

%d\n",a);

%d\t",++a,b--);
%d\t",a,b);
%d\t", ++a,b++);
%d\n" , a, b) ;

Cin Depth

int x,y,z;
x=8++;
y=++x++;
z= (x+Y) - -;
printf ("x = %d, y

(7) main(
{

%d, Z %d\n", x, y) ;

int a=4,b=8,c=3,d=9,z;
z=a++ + ++b * c- - - -d;
printf ("a = %d, b = %d, c %d, d

(8) main ( ).

%d,z %d\n",a,b,c,d,z);

int a=14,b,c;
a=a%-5;
b=a/3;
c=a/5%3;
printf ("a %d, b

(9) main (

/{

%d, c %d\n",a,b,c);

int a=15,b=13,c=16,x,y;
x=a-3%2+c*2/4%2+b/4;
y=a=b+5-b+9/3;
printf ("x = %d, y = %d\n", x, y) ;

(lO)main(
{

int x,y,z,k=10;
k+=(x=5,y=x+2,z=x+y) ;
printf("x = %d,y = %d,z %d,k %d\n",x,y,z,k);



Operators and Expressions

ll)maiI:J.( )
(

illt a;

float b;
b=lS/2;
printf("%f\tn,bl;
b=(floatl1S/2+(lS/2) ;
printf("%f\nn,b) ;

(12) main (
{

int a=9;
·char ch='A';
a=a+ch+24;
printf("%d,%c\t%d,%c\nn,ch,ch,a,al;

(13 I main (
(

55

int a,b,c,d;
a=b=c=d=4;
a*=b+1;
c+=d*=3;
printf("a %d,c

(14 Imain (
{

int a=S,b=10,temp;
temp=a,a=b,b=temp;
printf("a %d,b

(lSlmain(
{

int a=10, b=3, max;
a>b?max=a:max=b;
printf ("%d n ,max);

(161#include<stdio.h>
main( I
{

%d\nn,a, c);

%d\nn ,a, bl ;

int a=S,b=6;
printf("'d\tn,a=bl;
printf("%d\tn,a==bl;
printf ("%d %d\nn, afbl ;

/

(17) main (



C ;n Depth

int a=3,b=4,c=3,d=4,x,y;
x=(a=5)&&(b=7) ;
y= (c=5) II (d=8);
printf("a=%d,b=%d,c=%d,d=%d,x=%d,y=%d\n",a,b,c,d,x,y) ;
x=(a==6)&&(b=9) ;
y= (c==6) II (d=lO);
printf("a=%d,b=%d,c=%d,d=%d,x=%d,y=%d\n",a,b,c,d,x,y) ;

I

(18)main( )
{

int a=lO;
a=a++*a- -;
printf("%d\n",a) ;

. }

(19) main (
{

int a=2,b=2,x,y;
x=4*(++a*2+3) ;
y=4*(b++*2+3) ;
printf("a=%d,b=%d,x=%d,y=%d\n",a,b,x,y) ;

1.
2.

3.

4.
5.

6.

7.

Programming Exercise
Enter'the temperature in Celsius and convert that into Fahrenheit.
Accept the radius of the circle and calculate the area and perimeter of the circle.
Write a program to accept the number in decimal and print the number in octal and hexadecimal.,
Accept any five digit number and print the value of remainder after dividing by 3.
Accept any two numbers, if the first number is greater than second then print the sum of these
two numbers, otherwise print their difference. Write this program using ternary operator.
Write a program'to accept the principal, rate, and number of years and find out the simple interest.
Accepts marks in five subject and calculate the total percentage marks.

Answers
(1) 6
(2) c = 0, d = 1
(3) e = 0, f=-6
(4) 36
(5) 6, 5 6, 4 7, 4 7, 5

(6) Error, Expressions like 8++, ++x++, (x+y)- - are not valid.
(7) a = 5, b= 9,c = 2, d = 8, Z = 23

(8) a = 4, b = 1, c = °
(9) x=17,y=8
(10) x = 5, Y = 7, Z = 12, k = 22

)



Operators and Expressions 57

(ll) 7.000000 14.500000
(12) 65, A 98, b
(13) a = 20, c = 16

Precedence of + operator is more than that of += . Associativity of compound assignment operators
is from right to left

14) a = 10, b = 5

15) Since the precedence of assignment operator is less than that of conditional operator so the
conditional statement is interpreted as~ ( a>b?max = a : max) = b;,
Now this statement reduces to statement 10 = b, which results in an error. So the solution is to
put parentheses around the third operand as- a>b? max = a : (max = b);

(16) 6 1 6 6
(17) a = 5, b = 7, c = 5, d = 4, x = 1, y = 1

a = 5, b = 7, c = 5, d = 10, x = 0, y = 1
18) Result of these types of expressions is undefined.

(19) a = 3, b = 3, x = 36, y = 28

)



Chapter 5

Control Statements

In C programs, statements are executed sequentially in the order in which they appear in the program.
But sometimes we may want to use a condition for executing only a part of program. Also many situations
arise where we may want to execute some statements several times. Control statements enable us to
specify the order in which the various instructions in the program are to be executed. This determine.s
the flow of control. Control statements define how the control is transferred to other parts of the program.
C language supports four types of control- statements, which are as-
1. if...else

2. goto
3. switch j

4. loop
while
do...while
for

5.1 Compound Statement or Block
A compound statement or a block is a group of statements enclosed within a pair of curly braces {}
The statements inside the block are executed sequentially. The general form is-
{

statementl;
statement2;

For example
{

1=4;
b=2;
area=l*b;
printf("%d",area) ;

A compound statement is syntactically equivalent to a single statement and can appear anywhere in tl
program where a single statement is allowed.

)



Control Statements

5.2 if...else

59

if(condition)
{

This is a bi-directional conditional control statement. This statement is used to test a condition and take
one of the two possible actions. If the condition is true then a single statement or a block of statements
is executed (one part of the program), otherwise another single statement or a block of statements is
executed (other part of the program). Recall that in C, any nonzero value is regarded as tr!1e while zero
is regarded as false.

Syntax 1:
if(condition)

statementl;
statement;

There can be a single statement or a block of statements after the if part.

True

False

statement;

if(condition)
{

Flow chart ofif control statement

Here if the condition is true(nonzero) then statement! is executed, and if it is false(zero), then the next
st~tement which is immediately after the if control statement is executed.

Syntax 2:
if(condition)

statementl;
else i

statement2;
}

else

statement;

)



True

Next statement

False

C in Depth

Flow chart of if. .. else control statement

Here if the condition is true then statement1 is executed and if it is false then statement2 is executed.
After this the control transfers to the next statement which is immediately after the if. ..else control
statement.
/ *P5.1 Program to print a message if negative number is entered* /
#inc1ude<stdio.h>
main ( )
{

int num;
pJ;'in~f("Enter a number
scanf("%d".&num};
if (num<O)

printf ("Number entered
printf ("Value of num is

15t run:

Enter a number: -6

Number entered is negative

Value of num is -6

2nd run:·

If ) i

is negative\n"};
%d\n", num};

Enter a number : 8

Value of num is 8
/ *P5. 2 Program to print the larger and smaller of the two numbers * /
#include<stdio.h>
main ( )
{

.'
int a,b;
printf ("Enter the first number
scanf("%d".&a) ;

" ) i

I



second number

Control Statements

printf ("Enter the
scanf ("%d" ,.&b) ;
if (a>'b)

printf("larger
else

printf("larger

number

number.

%d and

%d and

\\ ) ;

smaller

smaller

number

number

%d\n",a,b);

%d\n", b, a) ;

61

}

Output:

Enter the first number : 9

Enter the second number : 11

larger number = 11 and smaller number = 9
/ *P5. 3 Program to print whether the number is even or odd * /
#include<stdio.h>
main ( )
{

int num;
printf ("Enter a number ") ;
scanf("%d",&num) ;
iffnum%2==O) /*test for eVen */

printf ("Number is even\n");
else

printf ("Number is odd\n");-
}

Output:

Enter the number : 15

Number is odd

5.2.1 Nesting of if... else

We can have another if. .. else statement in the if block or the else block. This is called nestin~ .of if... else
statements. Here is an example of nesting where we have if...else inside both if block and else block.

if (condition 1)
{

if (condition 2)
statementA1;

else
statementA2;

else

if(condition 3)
. statementB1;

else
statementB2

While nesting if...else statements, sometimes confusion may arise in associating else part with appropriate
if part: Let us take'an example-



C in Depth

if (grade== 'A')
{

if(marks>95)
printf("Excellent") ;

}

else
printf ("Work hard for getting A grade");

If we write the above code without braces as
if(grade=='A')

if(marks>95)
printf.("Excellent") ;

else
printf ("Work hard for getting A grade");

Here the else part is matched with the second if, but we wanted to match it with the first if. The compiler
does not associate if and else ·parts according to the indentations, it matches the else part with closest
unmatched if part. So whenever there is doubt regarding matching of if and else parts we can use braces
to enclose each if and else blocks.

/*P5.4 Program to find largest number from three given numbers*/
#include<stdio.h>
main( )
{

int a,b,c,large;
printf ("Enter three· numbers ") ;
scan~("%d%d%d",&a,&b,&c) ;
if (a>b)
{

if(a>c)
large=a;

else·
large=c;

else

if (b>c)
large=b;

else
large=c;

}

pri.ntf (":"argest number is %d\n", large) ;
}/*End of main() */.

The next program finds whether a given year is leap or not. A centennial(divisible by 100) year is Ie
if it is divisible by 400, and a non centennial year is leap if it is divisible by 4.
/*P5.5 Program to find whether a year is leap or not*/
#include<stdio.h>
main(
{

(



Control Statements, .

i!1t year;
printf ("Enter year
sca'nf ("%d " I &year) ;
if (year%100==0)
{

" ) ;'

63

if (year%400==0)
printf ("Leap year\n");

else
printf ("Not leap\n");

}

else

if (year%4==O)
printf ("Leap year\n");

else
. printf("Not leap\n");

_ ote that we can write this program using a single if condition and && and II operators.
':f (year%4==0 && year%100! =0 II year%400==0)

printf ("Leap year\n");
e se

printf ("Not leap\n");

-.2.2 else if Ladder

This is a type of nesting in which there is an if. .. else statement in every else part except the last else
part. This type of nesting is frequently used in programs and is also known as else if ladder.

statementD;

-:;.7 if( condition!)
//.... statementA;

''- ~lse

if (condition2)
........."71. statementB;
i.·· else

if ( condition 3)
..../7 statementC'." .,

<' else.........

if ( condition!)
statementA;

else jf (condition2)
statementB;

else if ( condition 3)
statementC;

else
statementD;

This nested structure is generally written in compact form as in second figure. The flow chart for this
.' ~

SlTUcture is-



stat A

False

stat C

False

1
False

C in Depth

I Next Statement I
Flow chart of else.. .ifladder

Here each condition is checked, and when a _condition is found to be true, the statements corresponding
to that are executed, and the contliol comes out of the nested structure without checking remaining
conditions. If none of ~~e conditions is true then the last else part is executed. '

and per>=70
and per>=55
and per>=40

marks ofthe
as-

of a student when
assigning grade is

to find out the grade
given. The method of

grade=A
grade=B
grade=C
grade=D
grade=E

/ * P5. 6 Program
4 subj ects are
per>:: 85
per<85
per<70
per<55
per<40
Here, per is perc,entage.
*/
#include<stdio.h>
main ( )
{

float ml, m2, ni3, m4, total, per;
char grade;
printf{"Enter marks of 4 subjects ");
scanf(-%f%f%f%f·,&ml,&m2,&m3,&m4) ;
total=ml+m2+m3+m4;
per=total/4;
if (per>=85)

grade= 'A' ;
else if(per>=70)

grade='B';
else if (per>=55)

grade= 'C' ;



COntrol Statements

else if (per>=40)
grade= 'D' ;

else
grade='E';

printf ("Percentage is %f\nGrade is %c\n", per, grade) ;

- we don't use the else if ladder, the equivalent code for this problem would be
::.f(per>=85)

grade=' A' ;
~=(per<85&&per>=70)

grade='B' ;
:f(per<70&&per>=S5)

grade=' C' ;
:!(per<55&&per>=40).

grade= 'D' ;
=-=(per<40)

grade=' E' ;

65

if.. .else ladder whenever a condition is found true other conditions are not checked, while in this
e all the conditions will always be checked wasting a lot of time, and moreover the conditions here

_ more lengthy.

-.3 Loops
ps are used when we want to execute a part of the program or a block of statements se"·~ral times.

- example, suppose we want to print "e is the best" 10 times. One -.way to get the desired output
_ - we write 10 printf statements, which is not preferable. Other way out is - use loop. Using loop

can write one loop statement and only one printf statement, and this approach is definitely better
the first ·one. With the help of loop we can execute a part of the program repeatedly till some

dition is true. There are three loop statements in C- "
while
do while
for

.3.1 while loop

e while statement can be written as:
::'°le(condition)

statement;
while(condition}
{

statement;
statement;



66

False

True

Flow chart of while loop

C in Dept}

Like if-else statement here also we can have either a single statement or a block of statements, a
here it is known as the body ~f lo'Op. Now let's see how this -loop works.

First the condition is evaluated; if it is true then the statements in the body of loop are executed. Au
the execution, again the condition is checked and if it is found to be true then again the statemel
in the body of loop are executed. This means that these statements are executed continuously till t
condition is true and when it becomes false, the loop terininates and the control comes out of the lo(
Each execution of th~ loop body is known as iteration.

/* P5.7- Program to print the numbers from 1 to 10 using while. loop
#inc1ude<stdio.h>
main ( )
(

int i=l;
while(i.::=10)
{

printf("%d\t",i) ;
i=i+1; / * Statement that changes the value of condition * /

}

printf(~'\n") -; /

Here initially the condition ( i <'0= 10) is true. After each iteration of the loop, value of i increases i

when the value of i equals 11 the condition becomes false and the loop terminates.

}

Output:

1 2 3 4 5 6 7 8 9 10



Control Statements 67

Note that inside the body of the loop there should be a statement that alters the value of the condition,
so that the condition becomes false ultimately at some point. -

J*P5.8 Program to print numbers in reverse order with a difference of 2*1
main ( )
{

int k=10;
while(k>=2)
{

printf("%d\tH,k);
k=k-2;

}

printf("\n H) ;
}

Output:

10 8 6 4 2

I*P5.9 Program to' print the sum of digits of any number* 1
=include<stdio.h>

ai-n ( )
{

last digit * J

number * J

\\ ) ;

rem=n%10; 1 * taking last digit of
sum+=rem;
n/=lO; 1* skipping

int n, sum=O, rem;
printf ("Enter the number
scanf("%d H, &n);
while(n>O)
{

:r
:s
.e
).

d

1

}

printf ("Sum of digits = %d\n H, sum) ;

utput:

Enter the number: 1452

Sum of digits = 12 I
ere we are extracting the digits of the number from right to left and then these digits are added one
y one to the variable sum. Note that the variable sum is initialized to 0. This is because we are adding

50me numbers to it, and if not initialized then these numbers will be added to garbage vatue present.
ill it. Let's see how the loop works when the value of n is 1452.

Before loop starts rem = garbage value, sum = 0, n = 1452
After 1st iteration rem = 1452%10 = 2, sum = 0+2 = 2, n = 145
After 2nd iteration rem = 145%10 = 5, sum = 2+5 = 7, n = 14
After 3rd iteration rem = 14%10 = 4, sum = 7+4 = 11, n = 1
After 4th iteration rem = 1%10 = 1, sum = U +1 = 12, n = 0

~-ow since the value of n is equal to zero, hence the condition ( n > 0) becomes false and the loop
ps.



68 Cin D~Pi

I*PS.10 Program to find the product of digits of any number*1
#include<stdio.h>
main ( )
{

in~ n,prod=l,rem;
printf ("Enter the number ").;
scanf("%d",&n) ;
while(n>O)
{

rem=n%10;
prod*=rem;
n/=10;

I*taking last digit*1

1 * skipping last digit of number* 1
}

printf("Product of digits = %d\n",prod);
}

Output:

Enter the number : 234
Product of digits = 24

The logic of extracting digits is similar to thaf in previous program, but here we are multiplying
jigits instead of adding, so here the variable prod is initialized by value 1.

I*PS.11 Program to find the factorial of any number*1
#include<stdio.h>
main( )
{

" ) i

int n, num;
long fact=l;
printf ("Enter the number
scanf("%d" ,&n);
num=n;
if(n<O)

printf ("No factorial of negative number\n");
else

while (n>l)
{

\
fact*=n;
n- - i

%1 d \ n", n um , fa c t) ;

}

printf ("Factorial of %d

}

Output:

Enter the number: 4
Factorial of 4 = 24

The factorial of a number n is the product of numbers from 1 to n.
.. n! "'" n * (n-1)* (n-2) *2*1.

4! = 4*3*2*1 = 24
~! = 8*7*6*5*4*3*2*1 = 40320
i
;
i



Control Statements 69

statement;
statement;

.e

We have taken the variable fact of type long instead of type int. This is so because the factorials grow
at a very fast rate, and they may exceed the range of an int (32767). Even the factorial of 8 is more
than this limit.

I *P5. 12 Program to .:::onvert a binary number to a decimal number*"
include<stdio.h>

main( )
{

int n,nsave,rem,d,j=l,dec=O;
printf("Enter the number in binary");
scanf ("%d", &n) ;
nsave=n;
while (n::-O)
{

rem=n%lO; I*taking last digit*1
d=rem*j;
dec+=d;
j*=2;
n/=lO; /*skipping last digit*/

}

printf("Binary number = %d, Decimal number = %d\n",nsave,dec);
}

Ouput

Enter the number in binary : 1101
Binary number = 1101, Decimal humber = 13

To convert a binary number to decimal, we extract binary digits from right and add them after multiplying
by powers of 2. This is somewhat similar to the program P5.9, only we have to multiply the digits
by powers of 2 before adding them. This is how the loop works for binary number 1101. ----<

Before loop starts: rem=garbage, d= garbage, dec=O, j=l, n=nsave=llOI
After 1st iteration: rem=1, d=1*1, dec= 1, j=2, n=110

After 2nd iteration: rem=O, d=0*2, dec=1 +0, j=4, n=ll
After 3rd iteration: rem= I, d= 1*4, dec= 1+0+4, j=8, n= I
After 4th iteration: rem=l, d=1 *8, dec=1+0+4+8, j=16, n=O

Now the value of n becomes zero so the loop terminates. We have taken a variable nsave to save the
value of binary number, because the value of n gets changed after the loop execution.

(The above program will be valid for binary numbers upto 11111 only, for larger numbers take long
int).

5.3.2 do...while loop

The 'do...while' statement is also used for looping. The body of this loop may contain a single statement
or a block of statements. The syntax for writing this loop is:

do do
statement;

while(condition) ;'

}while(condition) ;



C in Depth

Flow chart of do ... while loop

Here firstly the statements inside loop body are executed and then the condition is evaluated. If th(
condition is true, then again the loop body is executed and this process continues until tne conditiol
becomes false. Note that unlike while loop, here a semicolon is placed after the condition.

In a 'while' I09P, first the condition is evaluated and then the statements are executed whereas in j

~o while loop, first the statements· are executed and then the condition is evaluated. So if initially thl
condition is false the while loop will not execute at all, whereas the do while loop will always executl
at least once.

/ *:p5. 13 Program to print the numbers from 1 to 10 using
#include<stdio.h>
main ()
{

int i=l;
do
(

printf("%u\t",i) ;
i=i+1;

}while(i<=10) ;
printf("\n") ;

do...whi1e loop*.

/

Generally while loop is used more frequently than the do while loop but some situations may arise whe
it is better to check the condition at the bottom of loop. For example in the next two programs it •
better to use a do while loop.

}

Outp,Jrt:

1 2 3 4 5 6 7 8 9 10



Control Statements

I*P5.14 Program to count the digi ts in any number * /
-include<stdio.h> .
ain ( )

{

int n, count=O, rem;
printf ("Enter the number ") ;
scanf ("%d" ,&n) ;
do
{

n/=10;
count++;

}while(n>O) ;
printf ("Number of digits = %d\n!', count) ;

71

If we write the same program using a while loop then we won't get correct answer when input number
is O. The count of digits in number 0 is 1, but using while loop the answer will come out to be zero.

1* P5.15 Program to find the sum of numbers entered* /
include<stdio.h>
ain(

{

int num, sum=O.
do
{ '.

printf ("Enter a number· (0 to stop)
scanf("%d",&num) ;
sum+=num;

}while (num! =0) ;
printf ("Sum is %d\n", sum) ;

\, ) ;

In this program if we use while loop then the condition will be checked at the top, so either we'll have
to give some initial value to the variable num or we'll have to write duplicate printf and scanf( ) statements
before the loop.

The do ...while loop is generally used for checking validity of entered data. Suppose we want the user
to enter an employee ID, and the valid IDs are in the range 100 to 500 only. If the user enters an invalid
ID, we want to ignore that ID and again ask him to enter another one, and we want this process to
continue till he enters a valid ID. In this type of situation we can use do ... while loop.
do

printf("Enter employee ID ");
scanf("%d",&emp_id) ;

}while (emp_id<100 I I emp_id>50 n );

This loop will terminate only when the entered number is in the valid range 100 to 500.

5.3.3 for loop

The 'for' statement is very useful while programming in C. It has three expressions and semicolons
are used for separating these expressions. The 'for' statement can be written as-



C in Depth

for(expressionl;expression2;expression3)
-_.. statement;

for(expressionl;expression2;expression3)
{

statement;
statement;

The loop body can be a single statement or block of statements.

expressionl is an initialization expression, expression2 is a test expression or condition and expression3
.is an update expression. expression1 is executed only once when the loop starts and is used to i.nitialize
the loop .. variables. This expression is generally an assignment expression. expression2 is a condition
and is tested before each iteration of the loop. This condition generally uses relational and logical oj:>er~tors.

expression3 is an update expr~ssion and is executed each time after the body of the loop is executed.

Now let us see how this loop works. Firstly the initialization expression is executed and the loop variables
are initialized, and then the condition is checked, if the condition is true then the body of loop is executed.
After ,executing the loop body, control transfers to expression3(update expression) and it modifies the
loop variables and then again the condition is checked, and if it is true, the body of loop is executed.
This process continues till the condition is true and when the condition becomes false the loop is
terminated and control is transferred to the statement following the loop.

The work done by the for loop can be performed by writing a while loop as-

Initialization expression

False

True

Bodyofloop

Update expression

Next statement
Out of loop

Flow chart of for loop



Control Statements

expression 1;,
while(expre:ssion 2)
{

statement;

expression 3;

73

Although the task of while and for loops is same, the for loop is generally used when the number of
iterations are known in advance and while loop is used where number of iterations are not known,
I*P5.16 Program to print the numbers from 1 to 10 using for loop*1
#include<stdio.h>
main( )
{

int i;
for(i=1;i<=10;i++)

printf("%d\tH,i);
printf ("\n H);

}

Output:·

I 2 3 4 ·5 6 7 8 9 10

1*P5. 17 Program to print· numbers in reverse order wi th a dif ference of
2*1
main(
{

int' k;
for(k=10;k>=2;k-=2)

printf("%d\tH,k) ;
printf("\n H);

}

Output:

10 8 6 4 2

@~5. 18 Multiply two posi tive numbers without using * operator* 1

/ inc1ude<stdio. h>
'lTIain( )
{

int a,b,i;
int resul t=O;
printf("Enter two numbers to be multiplied ");
scanf("%d%dH,&a,&b) ;
for(i=l;i<=b;i++)

result=result+a;
printf("%d * %d %d\nH,a,b,result);

I*P5.19 Find the sum of this series upto n terms



C in Depth

1+2+4+7+11+16+ * /
#include<stdio.h>
main ( )
{

int i, n, sum=O, term=l;
printf ("Enter number of terms ") ;
scanf ("%d" ,&n) ;
for(i=l;i<=n;i++)
{

sum+=term;
term=terIh+i;

}

printf ("The sum of series upto %d terms is %d\n", n, sum) ;
}

/*P5.20 Program to generate fibonacci series
1,1,2,3,5,8,13,34,55,89 .
In this series each number is a sum of the previous two numbers*/
#include<stdJo.h>
main( )
{

long x, y,;i:;
int i,n;
x=O;
y=l;
pri!1tf ("Enter the number of terms ") ;
scanf ("%d" ,&n) ;
prip tf("%ld ~,y);

forli=~1U<n;i++)
{ /.~~-.-

z=x+y;
prln't f (:' %ld
x=y;

Y ==~_'4 ;

printf("\n") ;

\\ I Z r~

All the three expressions of the for loop are optional. We can omit anyone or all the three expressions
in the for loop but in any case the two separating semicolons should always be present.

expression! is omitted when the initialization work is done before entering the loop.'

expression2 is a condition and if omitted, it is always assumed to be true and so. this type of loop will
never stop executing. This type of loop is infinite and to avoid it there should be a statement inside
the loop that takes the control out of the loop.

expression3 is an update expression and is omitted when it is present inside the body of the loop..

/*P5.21 Program to print the sum of digits -of any number using for loop
*/

#inc1ude<stdio.h>



Control Statements 75'~

main ( )
{

int n, sum=O, rem;
printf ("Enter the number ") ;
scanf ("%d" , &n) ;
for ( ; n>O ;n/=lO)
{

rem=n%lO; /*taking last digit of number*/
sum+=rem;

}

printf ("Sum of digits = 9;d\n", sum) ;

We can also have any number of expressions separated by commas. For example, we may want to
initialize more than one variable or take more than one variable as loop variable.

/ *P5. 22 Program to print numbers using for loop* /
#include<stdio.h>
main ( )
{

int i, j ;
for(i=O,j=lO;i<=j;i++,j--)

printf("i = %d .j %d\n",i,j);

j = 10
j= 9

j = 8
j =7
j = 6
j = 5

Nesting of Loops

}

Output:

i = 0
i = 1
i = 2

i = '3

i = 4

i = 5

5.3.4

When a loop is written inside the body of another loop, then it is known as nesting of loops. Any type
of loop can be nested inside any other type of loop. For example a for loop may be nested inside another
for loop or inside a while or do while loop. Similarly while and do while loops can be nested.

/*P5.23 Program to understand nesting in for loop*/
#include<stdio.h>
main( )
{

int i,j;
for(i=1;i<=3;i++)
{

/ *ou.ter loop* /

printf("i %d\n",i);
for(j=1;j<=4;j++) /*inner loop*/

printf ("j %d\t", j);
printf("\n");



C in Depth

Output:
i = 1

j=l j=2 3 j=4
i=2
j=l j=2 J 3 j=4
i=3
j = 1 j = 2 j = 3 j = 4

Here for each iteration of the outer loop, the inner loop is executed 4 times.

The next program prints armstrong numbers. Armstrong number is a three digit number in which the
sum of cube of all digits is equal to the number, for example 371 is an armstrong number since 371
= 33+73+P=27+343+1

I*P5.24 Program to print armstrony iHlmbers from 100 to 999*1
#inc1ude<stdio.h>
main ( )

int num,n,cube,d,sum;
printf ("Armstrong numbers are : \n") ;

for(num=100;num<=999;num++)
{

/ *outer 100p* /

n=num;
sum=O;
whi1e(n>0)
{

1 * inner loop* /

d=n%10;
n/=10;
cube=d*d*d; .
sum=sum+cube;

}/*End .of while loop*1
if (num==sum)

printf("%d\n",num) ;
} 1 *End of for loop* /

Here the outer for loop is used to generate numbers from 100 to 999, and the inner while loop is used
to extract digits and then find the sum of cube of those digits.

I*P5.25 Program to find the sum of digits of a number until the sum
is reduced to 1 digit.
For example: 538769->38->11->2*1
#include<stdio.h>
main( )
{

long ·num;
int dig, sum;
printf ("Enter a number ") ;
scanf("%ld",&num) ;
printf("%ld->",num) ;



ntrot (:jtatements

do
{

for(sum=O;num!=O;num/~lO)

{

dig=num-%lO;
sum+=dig;

}

printf("%d\t",sum);
num=sum;

}while(num/10!=O) ;
printf("\n") ;

utput:

Enter a number: 789988

789988->49 13 4

ere the inner for loop is used tt? find the digits of the number.

77

·.3.5 Infinite Loops

The loops that go on executing infinitely and never terminate are called infinite loops. Sometimes we
'te these loops by mistake while sometimes we deliberately make use of these loops in our programs.

~et us take some examples and see what type of mistakes lead to infinite loops.
A) for (i=O; i<=5; i- -)

printf("%d",i); ,

This loop will execute till the value of i is less than or equal to 5 i.e. the loop will terminate only
when i becomes greater than 5. The initial value of i is 0 and after each iteration its value is
decreasing, hence it will never become greater than 5. So the loop condition will never become
false and the loop will go on executing infinitely. For the loop to work correctly we should write
i++ instead of i- -.

(B) There should be a statement inside the loop body that changes the value of loop variable after<-each
iteration. In for loop this work is done by. the update expression but in- while and do while we
may forget to change the loop variable and this can lead to infinite loop.
int k=l;
do
{

printf ("%d", k) ;
sum=sum+k;

}while(k<5) ;

Here we are not changing the value of k inside the loop body and hence the loop becomes infinite.
(C) A common mistake made by beginners is to use the assignment operator(=) where equality operator(=

=) should have been used. If this mistake is made in the loop condition then it may cause the
loop to execute infinitely. For example consider this loop:
while(n=2)
{

}

Here we wanted the loop to execute till the value of n is equal to 2. So we should have written



n= =2 but mistakenly we have written n = 2. Now n = 2 is an assignment expression and the
value of this expression is 2, which is a nonzero(true) value and hence the loop condition is always
true.

(D) int i;
for(i=32000;i<=32767;i++)

printf("%d ",i);

78 C in Depth

Everything seems to be correct with this loop but even then it executes infinitely. This is because
i is an int variable and the range of an int variable is from -32768 to 32767. As the value of i
exceeds 32767 it goes on the negative side and this process goes on, leading to an infinite loop.
The output\ is-

32000 32001. 32767 -32768 -32767 -1 0 1 2 32767 -32768 ..

(E) float k=2. 0;
while (k! =3.0)
{

printf("%f\n",' k);
k=k+O.2;

This loop is infinite because the computer represents a floahng point value as an approximation
of the real value. The computer may represent the value 3.0 as 2.999999 or may be as 3.000001.
So our condition (k!=3.0) never becomes false. The solution for this problem is to write the condition
as (k<=3.0).

(F) int i=l;
while (i<=5) ;

printf("%d-,i++) ;

This loop will produce no output and will go on executing infinitely. The mistake here is that we
have puta semicolon after the condition. So this loop is treated as: ~
while(i<=5)

This null statement is treated as the bo~y of loop and it keeps on executing.

These were some of the examples where infinite loops occur due to mistakes, but sometimes infinit{
loops are intentionally used in programs. To come out of these loops break or goto statements are used
while(l) fort ) do
{ {

}while(l);

These types of loops are generally used in menu driven programs.

5.4 break statement
break statement is used inside ,loops and switch statements. Sometimes it becomes necessary to COlli

out of the loop even before the loop condition becomes false. In such a situation, break statement i
used to terminate the loop. This statement causes an immediate exit from that loop in which thi,



Control Statements I
I

79

statement appears. It can be written as-

break;

When break statement is encountered, loop is terminated and the control is transferred to the statement
immediately. after the loop. The break statement is generally written along with. a condition. If break
is written inside a nested loop structure then it causes exit from the innermost loop.

Next iteration
of loop

Beginning ofLoop

~ True r-------....,
.~~--.. break statement

Next statement
Out of loop

Break (control statement)

*P5.26 Program to understand the use of break* /
=include<stdio.h>
=ain(

int n;
for(n=1;n<=5;n++)

if (n==3)
{

printf ("I understand the use of break\n").;
break;

}

printf ("Nilmber %d\n", n) ;

le

is
is

}

printf ("Out of for loop\n");



C in Depth

Output:
Number = 1
Number = 2
I understand the use of break
Out of for loop

This is a simple program, not of much use but illustrates the use of break statement. Had there been
no break statement, this loop would have executed 5 times. But here as the value of n becomes equal
to 3, break is encountered and loop is terminated.

Now we take a program which checks whether a number is prime or not. A prime number is a number
that is divisible only by 1 and itself. A number n will be prime if remainders of n/2, n/3, n/4 nJ

-Vn are all non-zero, or in other words n is not divisible by any number from 2 to -Vn.

/*PS.27 Program to find whether a number is prime or not*/
#include<stdio.h>
#include<math.h>
main(
{

int i, num, flag=l;
printf ("Enter a number ") ;
scanf("%d",&num) ;

for(i=2;i<7 s qrt(num);i++)
{ • '- '0. ...........( .,.....

if (n\lm%i=±Q )
{ \

printf("%d is not prime\n",num);
f~ag=q;'

break(
} I .'

} ~,

if (flag==yY
printf ("%d is pr·ime\n", num) ;

...

sqrt( ) isi a library function that returns the square root of a number, we have to include header fi
math.h when we use this function. The range of for loop is from 2 to -Vn, if the number is divisib
by any number from this range means the number is not prime and there is no need to check divisibili
by other numbers, hence the control is transferred out of loop by break statement. Control can cor
out of loop in two situations, after the full execution of loop when loop condition becomes false,
due to break statement. If control comes out after full execution of loop, then the value of flag Vi

be 1 and number will be prime. .

5.5 continue statement
The continue statement is used when we want to go to the next iteration of the loop after skippi
some statements of the loop .. This contirtue statement can be written simply as-

continue;

It is generally used with a condition. When continue statement is encountered all the remaining stateme



Control Statements 81

(statements after continue) in the current iteration are not executed and the loop continues with the
next iteration.

The difference between break and continue is that when break is. encountered the loop terminates and
the control is transferred to the next statement following the loop, but when a continue statement is
encountered the loop is not terminated and the control is transferred to the beginning of the loop.

In while and do-while loops, after continue statement the control. is transferred to the test condition
and then the loop continues, whereas in for loop after continue statement the control is transferred to
update expression and then the condition is tested.

Begirming of loop

Next iteration
of loop

.,,;;>"----+1 continue statement

continue (control statement)

j

/*P5.28 Program to understand the use of· continue statement*/
4include<stdio.h>
main ( )
{

int n;
for(n=1;n<=5;n++)
{

if(n==3)
{

printf ("I understand the use of continue\n");
continue;

}

printf ("Number = %d\n", n) ;
}

printf ("Out of for loop\n");



82

Output
Number = 1
NumbEi" = 2
I understand the use of c'ontinue
Number = 4
Number = 5,
Out of for loop

C in Depth

/*P5.29 Program to find the sum and avera\:j'=' of 10 positive integers*/

#include<stdio.h>
main ( )
{

int i=l, n, sum=O;
float avg;
printf ("Enter 10 positive numbers
whi1e(i<=10)
{

\n") ;

printf ("E;nter number
scanf( "%d", &n);
if <n<O)
{

%d \\ Ii) i

, printf ("Enter only positive numbers\n");
continue;

sum+=n;
i++;

\.

}

aVg=sum/10.0;
printf ("Sum = %d Avg = %f\n", sum, avg) ;

In this program if any negative number is enter~d then a message is displayed and the control is transferred
to the beginning of loop.

5.6 goto
This is an unconditional control statement that transfers the flow of control to another part of the
program.

The goto statement can be used as
goto label;

label:
statement;

Here label is any valid C identifier and it is followed by a .colon.

Whenever the statement goto label; is encountered, the control is transferred to the statement that i:



}

Output:

Enter the number : 14
Number is even

The label can be placed anywhere. If the label is after the goto then the control is transferred forward
and it is known as forward jump or forward goto, and if the label is before the got6 then the control
is transferred backwards and it is known as backward. jump or backward goto. In forward goto, the
statements between goto and label will not be executed and in backward goto statements between goto
and label will be executed repeatedly. More than one goto can be associated with the same label but
we cannot have same label at more than one place.

The control can be transferred only within a function using goto statement.(Concept of functions will
be introduced in further chapters)

There should always be a statement after any label. If label is at the end of program, and no statements
are to be written after it, we can write the null statement (single semicolon) after the label because
a program can't end with a label.

The use of 'goto' should be avoided, as it is difficult to understand where the control is being transferred.
Sometimes it leads to "spaghetti" code, which is not understandable and is very difficult to debug and
maintain. We can always perform all our jobs without using' goto, and the use of goto is not favoured
in structured programming.

Although the use of goto is not preferred but there is a situation where goto can actually make the
code simpler 'and more readable. This situation arises when we have to exit from deeply nested loops.
To exit from a single loop we can use the break statement, but in nested loops break will take the control
only out of the innermost loop.

/*P5.30 Program to print whether the number is even or odd*/
#include<stdio.h>
main()
{

83

/

(I ) ;numberthe
&n) ;

int n;
printf ("Enter
scanf (" %d",
if (n%2:=:=O)

goto even;
else

goto odd;
even

printf ("Number is even");
goto end;

odd
printf ("Number is odd");
gotoend;

end:
printf("\n") ;

immediately after the label.

Control Statements



C in Depth

fore )
{

while( )
{

fore )
{

if( )

} } l, goto stop; -J
stop:

•......................

As mentioned earlier, we can always write any code without using goto, so· here also we have anotheJ
way of exiting out of the deeply nested loop.

flag=O;
fore )
{

while( )
{

fore )
{

if( )
{ flag=l;

break; /*out of innermost for loop*/
}

}
if( flag= =1)
break; .. /*out of while loop*/

If(flag= =1)~
break;~ /* out of outer for loop*/

We can see that in the case of nested loops, the code using goto is more readable and if it is not USI

then many tests have to be performed.

5.7 switch
This is a multi-directional conditional control statement. Sometimes there is a need in program to ma:
choice among number of alternatives. For making this choice, we use the switch statement. This c
be written as-



Control Statements 85

switch(expression)
{

case constantl:
statement

case constant2:
statement

case constantN:
statement

default
statement

Here switch, cas~ and default are keywords. The "expression" following the switch keyword can be
any C expression that yields an integer value. It can be value of any integer or character variable, or
a function call returning an integer, or an arithmetic, logical, relational, bitwise expression yielding an
integer. It can be any integer or character constant also. Since characters are converted to their ASCII
values, so we can also use characters in this expr~ssion. Data types long int and short int are also a owe .
-= - . ~. .• r-es rr06-~

The constants following the case keywords should be of integer or character type. They can be either
constants or constant expressions. These constants must be different from one another.

We can't use floating point or string constants. Multiple constants in a single case are not allowed; each
case should be followed by only one constant.

Each case 'can be followed by any number of statements. It is also possible that a case has no statement
under it. If a case is followed by multiple statements, then it is not necessary to enclose them within
pair of curly braces, but it is n0t an error if we do so. The statements under case can be any valid
C statements like if else, while, for or even another switch statement. Writing a switch statement inside
another is called nesting of switches. Now we'll see some valid and invalid ways of writing switch
expressions and case constants.

int a, b, c; char d, e; float f;

j

Valid

switc~(a) switch(a>b) switch(d +e-3)

Invalid

switch(f) switch(a+4.5)

Valid

switch(a>b && b>c) switch(func(a, b))'

case 4: case 'a': case 2+4: case '.a'>'b': .

Invalid

case 2, 4, 5: .case a+2:case a>b:case a:case 2.3:case "second":
case 2 : 4 : 5 :

Now let us see how the switch statement works. Firstly the switch expression is evaluated, then the
1



86 C in Depth

-.
value of this expression is compared one by one with every case constant. If the value of expression
matches with any case constant, then all statements under that particular case are executed. If none
of the case constant matches with the value of the expression then the block of statements under default
is executed. 'default'. is optional, if it is not present and no case matches then no action takes place.
These cases and default can occur in any order.

/*P5.31 Program to understand the switch control statement*/
#include<stdio.h>
main (.)
{

int choice;
printf ("Enter your choice ") ;
scanf("%d",~choice);

switch(choice)
{

case 1:
frintf("First\n") ;

case 2:
printf("Second\n");

case 3:
printf("Third\n");

default:
printf ("Wrong choice\n");

}

Output:

Enter your choice : 2
Second
Third
Wrong choice

Here value of choice matches with second case so all the statements after case 2 are executed sequentially
The statements of case 3 and default are also executed in addition to the statements of case 2. Thi~

is known as falling through cases.

Suppose we don't want the control to fall through the statements of all the cases under the matchinl
case, then we can use break statement. If a break statement is encountered inside a switch, then al
the statements following. break are not executed and the control jumps out of the switch. Let's rewrite
the above program using break.

I*P5.32 Program to understand the switch with break sta·tement*/
#include<stdio.h>
main ( )
{

int choice;
printf ("Enter your choice ") ;
scanf("%d",&choice);

switch(choice)
{

case 1:



Control Statements

printf("First\n"); l
break; j¥break

case 2:
printf("Second\n") ;
break;

case 3:
printf("Third\n");
break;
default:
printf("Wrong choice\n U

);

}

}/*End of main() */

statement in

87

Output:

Enter your choice 2 :

Second:

It is -not necessary that if break is present inside switch, then it should be present after all case statements.
Some c,ases may have break while others may not have. So the use of break inside switch is optional,
it mayor may not be used depending on the requirement and logic of the program. The use of continue
.statement is not valid inside switch.

True



The break statement is not logically needed after the last case(or default if it is at the last) but it is
a good programming practice to do so because in future we may need to add new cases at the last.

88 C in Depth

1* P5 .33 Program to perform arithmetic calculat ions on integers * 1
#include<stdio.h>
main ( )
{

char op;
int a,b;
printf ("Enter number operator and another number ") ;
sca·nf ("%d%c%d", &a, &op, &b) ;
switch(op)
{

case '+':
printf (".Result
break;

%d\n", a+b) ;

case '-':
printf ("Result = %d\n", a-b);
break;

case '*'.
printf("Result %d\n",a*b);
break;

case 'I':
printf(~Result %d\n",a/b);
break;

case '%':
printfl"Result %d\n",a%b);
break;

default:
printf I "Enter valid operator\n");

}/*End of switch*1
}/*End of mainl )*1

Output:

Enter number operator and another number : 2+5

Result = 7

In this program, the valid operator for multiplication is only '*', ifwe want to make 'x', 'X' also valid
operators for multiplication, then we can modify above switch statement like this.

switch(op)
{

case '-':
result
break;

case 'x':
case 'X':
case '*'.

result

a-b;

a*b;



Control Statements

break;
case '/':

89

}/*End of switch*/

Here we have added two cases which have no statements. In both these cases, statements of case '*'
will be executed since there is no break after case 'x' and case 'X'.

/*P5.34 Program to find whether the alphabet is a vowel or consonant*/
#include<stdio.h>
main(
{

char ch;
printf ("Enter an alphabet ") ;
scanf("%c U

, &ch);
switch(ch)
{

case 'a' :

case 'e' :

case \ i I :

case '0' :

case 'u' .,
printf ("Alphabet is a vowel \n U

) ;

break;
default:

printf ("Alphabet is a consonant\n U
);

In this program, if someone enters a vowel in uppercase then it will be regarded as a consonant. One
solution to this problem is to add 5 more cases for uppercase vowels. But we can solve this problem
in another way without adding any cases. We have studied earlier that switch expression can be a function
call returning an int or char. So change the switch expression to tolower(ch) and now our problem
will be solved. tolower() is a library function which converts uppercase to lowercase, header file ctype.h
has to be included to use this function.

Switch statement is very important in menu driven programs. Here we'll make a menu driven(dummy)
program which is identical to a database application. Although this program performs nothing useful

ut it shows us the structure of menu driven programs.

I*P5.35 A menu driven program using infinite loop and switch*/
include<stdio.h>
ain( )

{

int choice;
while (l)

{

printf("l.Create database\n U
);

print1 (" 2 . Insert new record\n U
);

printf ("3 ',Modify a record\n U
);

printf("4.Delete a record\n U
);



C in Depth

printf("5.Display all records\n");
printf("6.Exit\n") ;
printf ("Enter your choice ") ;
scanf("%d",&choice);
switch(choice)
{

case 1:
printf ("Database created ..... \n\n") ;
break;

case 2:
printf ("Record inserted ..... \n\n") ;
break;

case 3:
printf ("Record modified ..... \n\n") ;
break;

case 4:
printf ("Record deleted ..... \n\n") ;
break;

case 5:
printf ("Records displayed ..... \n\n") ;
break;

case 6:
exi t (1) ;

default:
printf ("Wrong choice\n");

}/*End of switch~/

} / *End of while* /
} / *Rnd of main ( ) * /

Here we have taken switch inside an infinite loop. The function exit( ) is used to tenninate the prograrr
Each ~ime this loop executes, all options will be displayed and we'll be asked to enter Qur choice
Appropriate action will be taken depending on our choice. If we enter choice 6, then we'll come ou
ofthe program. In real programs we'll write full code inside the cases instead of simple printf statementf

5.8 Some Additional Problems

Problem 1

Write a program to find whether a date entered is valid or not. Assume that dates between years 1851
and 2050 are valid.
/ *P5 .36 Program to check whether a date is valid or not. * /
#include<stdio.h>
main( )
{

int . d,m,y;·
int flag=l, isleap=O;
printf ("Enter date (dd/mm/yyyy) ") ;
scanf("%d/%d/%d",&d,&ID,&y) ;
if (y%4==0 && y%100! =0 II y%400==O)

·isleap=l;

if (y<=1850 II y>=2050)



Control Statements

flag=O;
else if (m<l II m>12)

flag=O;
else if (d<l)

flag=O;
else if (m==2) /*check for number of -:Jays in February* /
{

if (d>28)
flag=O;

if(d==29&&isleap)
flag=l;

91

else if(m==4 II m==6 II m==9 II m==ll)/*Check days in april, june,
sept, nov* /

if (d>30)
flag=O;

}

else if (d>31)
flag=O;

if (flag== 0)
printf ("Not a valid date\n");

else
printf ("Valid Date \n");

}/*End of main() */

Problem 2

Write a program to find difference of two dates in years, months and days. Assume that the dates are
entered in valid range and that the first date falls before second date.
/*P5.37 Program to get difference of two dates in years, months, days*/
#include<stdio.h>
main(
{

int dl, d2, d, ml, m2, m, yl, y2, y;
printf ("Enter first date (dd/mm/yyyy) ");
scanf("%d/%d/%d",&dl,&ml,&yl) ;
printf ("Enter second date (dd/mm/yyyy) ") ;
scanf("%d/%d/%d",&d2,&m2,&y2) ;
if(d2<dl)
{

if (m2==3)
{

if(y2%4==O && y2%lOO!=O II y2%400==O) /*check for leap*/
d2=d2+29;

else
d2=d2+28;

}

else if (m2==5 II m2==71Im2==lO Ilm2==12)
d2=d2+30;



C in Depth

else
d2=d2+3l;

m2=m2-1;
}

if (m2<ml)
{

y2=y2-1;
m2=m2+12;

}

y=y2-yl;
m=m2-ml;
d=d2-dl;
printf ("Difference of the two dates is ") ;
printf("%d years %d months %d days\n",y,m,d);

}/*Endof main()*/

Here we are subtracting first date from second date, so we can get the difference in years, months
and days by writing:

y = y2 - y 1; m = m2 - m 1; d = d2 - d1;

We have assumed that the second date falls after first date, so y2 will always be greater or equal to
yl and y will always come out positive.

It is possible that m2 is less than m 1, in this case m will come out negative, and if d2 is less than
d1 then d will come out to be negative. So before calculating y, m and d we should make sure that
m2 is greater than or equal to m 1 and d2 is greater than or equal to d 1.

If d2 is less than d1, then we borrow a month from m2 and add the days of that month to d2. Now
since all the months have different number of days, the days added to d2 will depend on the month
borrowed. We'll always borrow a month that is before m2. For example if m2 = 5(May), then we'll
borrow month April from m2, so we'll add 30 to d2.

d2 = d2+30; m2 = m2-1; '"

If m2 = 3(March), then we'll borrow month February from m2, so we'll add 28 or 29 (if it is leap
year) to d2.

d2 = d2+28; m2 = m2-1;

In the program we've done this through nested if else statements.

If m2 is less than m1, then we borrow 1 year{12 months) from y2 and add it to m:L.

n12=m2+12; y2=y2-1;

Now m2 will ,become greater than m 1.

Problem 3

Write a program to multiply two numbers by Russian peasant method. Russian peasant method multiplies
any two positive numbers using multiplication by 2, division by 2 and addition. Here the first number
is divided by 2(integer division), and the second is multiplied by 2 rep~atedly until the first number reduces
to 1. Suppose we hav~ to multiply 19 by 25, we write the result of division and multiplication by 2,
in the two columns like this:



Control Statements 93

19
9
4
2
1

25
50
100
200
400
475

Add
Add

Add

_ ow to get the product we'll add those values of the right hand column, for which the corresponding
left column values are odd. So 25, 50, 400 will be added to get 475, which is the product of 19 and

5, Now we will see how this method can be implemented in program.
I*P5.38 Program to multiply two numbers by russian peasant method* 1
:include<stdio.h>
:nain ( )
{

int a,b,x,y,s:O;
printf ("Enter two numbers to be multiplied ") ;
scanf("%d%dH,&X,&y) ;
a:x;
b=y;
while(a>:l)
{

if(a%2!:O)
s:s+b;

a/:2;
b*:2;

}

print'f ("%d * %d

Problem 4

I*Loop till first number reduces to 1*1

1*1f first number is odd*1
1 *Add second number to s * 1
I*Divide first number by 2*1
I*Multiply Second number by two*1

%d\n H,X,y, s);

Write a currency program, that tells you how many number of 100, 50, 20, 10, 5, 2 and 1 Rs notes
will be needed for a given amount of money. For example if the total amount is Rs 545 then five 100
Rs notes, two 20 Rs note and one 5 Rs note will be needed. This sort of program can be used in ATM
machines,
I*P5.39 Program to find out the number of notes required for a given
amount 0 f money * 1
#include<stdio.h>
main(

int n, choice, notes;
printf ("Enter the total
scanf("%dH,&n) ;
printf ("Enter the value
scanf("%dH,&choice);
switch (choice)

amount in Rs ") ;

of note from which u want to begin \\ ) i

default:

printf ("Enter only valid values H);



C in Depth

break;
case 100:

notes=n/100;
printf("Number of 100 Rs notes %d\n",notes);
n=n%100;

case 50:
notes=n/50;
printf("Number of 50 Rs notes %d\n",notes);
n=n%50;

case 20:
notes=n/20,
printf("Numbel. of 20 Rsnotes %d\n",notes);
n=n%20;

case 10:
notes=n/10;
printf ("Number of 10 Rs notes %d\n" ,notes) ;
n=n%10;

case 5:
notes=n/5;
printf ("Number of 5 Rs notes %d\n" ,notes) ;
n=n%5;

case 2:
notes=n/2;
printf ("Number of 2 Rs notes %d\n", notes) ;
n=n%2;

case 1:
notes=n/1;
printf("Number of 1 Rs notes %d\n",notes);

}

printf("\n") ;

Output:

Enter the total amount in Rs : 748

Enter the value of note from which u want to begin : 50

Number of 50 Rs notes = 14
Number of 20 Rs notes = 2

Number of 10 Rs notes = 0
Number of 5 Rs notes = 1

Number of 2 Rs notes = 1
Number of 1 Rs notes = 1

The logic of the program is simple, break statements are not used. The default statement is in the beginning
and there is a break after the default.

Problem 5 .

Write a program that finds out the day of week from a given date.

The formula for calcula~ing the day is-



Control Statements

day = (y +j + f - h + fh) % 7;
j = julian day of the date
y = year of given date(in 4 digits)
f = (nt part of (y-l)/4 '
h = int part of (y-l)/lOO
fh = int part of (y-l )/400

The value of varia~le day tells us the day of week.

Value of variable day Narne 'of day of week

0 Saturday

- 1 Sunday
2 Monday
3 Tuesday
4 Wednesday
5 Thursday
6 Friday

95

In the above formula, julian day ofa date represents the day of year on which the date falls. Julian
day of 1st Jan is 1, of 2nd Feb is 33, of 31 s1 Dec is 365(366 if leap year).

Now let's decide the structure of our program. Once we get the value of variable day, we can use
switch to print the n~me of day of the week from the value of day.

To ca,lculate the value of day we'll have to find out the value of julian day. Let's assume that the day,
month and year of entered date are stored in variables d, m and y respectively. We take another variable
j for the value of julian day.

Initially the value of j is taken equal to d, and then days of previous months are added to j to get the
value of julian day. We can use switch statement for this and take m as the switch variable.~

j =d;
switch(m)
{

case 2:
case 3 :
case 4 :

case 5 :
case 6:
case 7:
case 8 :
case 9:
case 10:
case 11:
case 12:

j+=31; break;
j+=31+28; break;
j+=31+28+31; break; .
j+=31+28+31+30; break;
j+=31+28+31+30+31; break;
j+=31+28+31+30+31+30; break;
j+=31+28+31+30+31+30+31; break;
j+=31+28+31+30+31+30+31+31; break;
j+=31+28+31+30+31+30+31+31+30; break;
j+=31+28+31+30+31+30+31+31+30+31; break;
j+=31+28+31+30+31+30+31+31+30+31+30; break;

}

Suppose the date is 2nd May 2002, then d= 2, m = 5, so the control will go .in case 5, and julian
day will be 2+31+28+31+30 = 122

The above logic applied in switch statement was simple but as we can see the whole switch statement



is confusing to read and understand. If we omit the break statements, take the cases in descending
order, and take the switch variable as m-1 then we can accomplish our job by writing a very concise
switch statement.

96

j =d;
switch(m - 1 )
{

case 11: j+=30;
case 10: j+=31;
case 9: j+=30;
case 8 : j+=31;
case . 7: j+=31;
cas.e 6 : j+=30;
case 5 : j+=31;
case 4 : j+=30;
case 3 : j+=31;
case 2 : j +=2_8;
case 1: j +=31;

}

C in Dept?
./

Here if d = 2, m= 5 theri control will go in case 4(5-1), and since there is no break, all statements
of cases 4, 3, 2, 1 will be executed. Hence j = 2+30+31+28+31 = 122. This shows that we can use
the flexibility of switch statement according to the need and logic of the program.

We have found out the julian day, but what if the year is leap. In that case we'll have to add 1 to the
julian day, if the month is other than January or February. This is how we'll do it.

"

if (y%4==0&&y%100 ! =0 II y%400==0) / *check for leap year* I
if(m!=1&&m!=2)

j=j+1;

Recall that a non centennial year is leap if it is divisible by 4, and a centennial year (divisible by 100)
is leap if it is divisible by 400. ~

/ *P5. 40 Program to find day of week from a given date* /
#include<stdio.h>
main (.
{

int d,m,y,j,f,h,fh,day;
.printf("Enter date (dd/mm/yyyy)
scanf("%d/%d/%d",&d,&m,&y);
j=d;

swi tch (m - 1)
{

case 11: j+=30;
case 10: j+=31;
case 9 : j+=30;
case 8 : j+=31;
case 7 : j+=31;
case. 6· j +=3 0;
case 5 : j+=31;
case 4 : j+=30;
case 3 : j+=31;

\\ ); .'



Control Statements

case 2:
case 1:

j+=28;
j+=3l;

97

}

if (y%4==0&&y%100! =0 II y%400==O)
if(m!=1&&ml';'2)

j=j+l;
f=(y-l)/4;

- h= (y-l) /100;
fh=(y-l)/400;
day=(y+j+f-h+fh)%7;
switch(day)
{

.:::::ae 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:

prin~f ("Saturday\n"); break;
printf ("Sunday\n"); break;
printf ("Monday\n"); break;
printf ("Tuesday\n"); break;
printf ("Wednesday\n"); break;
printf ("Thursday\n"); break;
printf ("Friday\n"); break;

}

}/*End of main( )*/

Problem 6

Write a program to print triad numbers. Any three numbers will be triad numbers if they satisfy the·
ollowing conditions-
1. Each number is a three digit number.

All the digits in the three numbers (total 9 di.~its) should be different.
3. Second number should be twice the first number and third number should be thrice the first number.

For example-

219 438 657

267 534 801
I*P5.41 Program to print triad numbers * /
=include<stdio.h>
ain(

{

int m,n,p,num;
int i,k,dl,d2,d3;
for(num=100;num<=999/3;num++)/*Loop A*/
{

for (i=num; i<= 3 *num; i+=num) / * loop B * /
{

k=i;
dl=k%lO; k/=lO;
d2=k%10; k/=lO;
d3=k%10; k/=lO;
if (dl==d2 II d2==d3 II d3==dl)

goto nextnum;
} / *Endof loop B* /



98 C in Depti

for(m=num;m>O;m/=lO) /*Loop c*/
{

dl=m%lO;
for(n=num*2;n>O;n/=lO) /*Loop D*/
{

d2=n%lO;
for(p=num*3;p>O;p/=lO) /*Loop E*/
{

d3=p%lO;
if (dl';'=d211 d2==d311 dl==d3)

goto nextnum;
} / *End of Loop E* /

} / *End of Loop D* /
}/*End of loop C*/
p r i n t f ( "% d %d %d \ t" I n um I n um * 2 , n um* 3 ) ;
nextnum:

} / *End of loop A* /
}/*End of main( )*/

Loop A is used to generate numbers. Since triad numbers are three digit numbers, bence this loop sta
from lQO. The upper limit of this loop is 333 (999/3) because for numbers more than 333, 3*num v
not be a three digit number.

Loop B is inside loop A, and it executes three times, for i = num, i = 2*num and i = 3*num. It fil
out whether the three digits in a number(i) are different or not. In this loop dl" d2, d3 are digits
a single number, and if any two digits are found to be sar-.f': then we again go to the update express
of loop A and check for next number.

Loops C, D, E are nested loops which find out whether there are any common digits in the tb
numbers(num, 2*num, 3*num). Here dl, d2, d3 are digits of num, 2*num, 3*num respectively. If:
two digits are same then we go to the update expression of loop A to check for next number.

Note that in loops C, D and E, the dig\ts of different numbers are compared, and in loop B digit1
a. single number are compared.

Problem 7

Write a program to find out the Least Common Multiple, and Highest Common Factor of two numb
/*P5.42 Program to find the LCM and HCF of two numbers*/
#include<stdio.h>
main ( )
{

int x/y'/a/b;
printf ("Enter two numbers
scanf ("%d %d" I &x , &y) ;
a=x;b=y;
while(a!=b)
{

if (a<b)
a=a+x;

else
b=b+y;

" ) i .



Control Statements

}

printf("LCM of' %d and %d is %d\n",x,Y,a);
a=x; b=y;
while(a!=b)
{

if(a>b)
a=a-b;

else
b=b-a;

}

printf ("HCF of %d and %d is. %d\n", x, y, a) ;
}

Output

Enter two numbers : 60 135

LCM of 60 and 135 is 540

RCF of 60 and 135 is 15

5.9 Pyramids

* 1 1 1 2 1
** 22 1 2 2 3 34 01
* * * 333 123 4 5 6 456 101
**** 4444 123 4 7 8 9 10 5678 0101
***** 5 5 5 5 5 12345 11 12 13 14 15 6789 10 1 0 101

(a) (b) (c) (d) (e) (f)

The program for pyramid (a) is-
=tain( )
{

int ·i,j,n;
printf ("Enter n ") ;
scanf("%d",&n) ;

for(i=l;i<=n;i++)

for(j=l;j<=i;j++)
printf("* ");

printf("\n"); I*for next line of pyramid*/

5
54
543
5432
5.4 3 2 1

(g)

5
44
333
2222
1 1 111

(h)

99

Here the outer for, loop is for number of lines and the inner loop is for number of stars in each line.
We can see that the number of stars is equal to the line number, hence the inner loop will execute once
for first line, twice for second line, thrice for third line and so on; . ,- , .

In the above program if we print the value of i, then we'll get the pyramid (b), and on printing the
value of j we'll get the pyramid(c). '

For the pyramid (d) we'll take a variable p = 1, and write the printf statement as

printf("%3d",p++);



For pyramid (e) we'll print the value of i+j, for pyramid (f) we'll print 1 if (i+j) is even and print 0
if (i+j) is odd.

For pyramid (g) we have to print (n+ I-j) and for pyramid (h) we have to print (n+ I-i). These two
pyramids can also be written by reversing the loops and then printing the values of i and f For example
code for pyramid (g) can be written as-

100 C in Depth

for(i=n;i>=l;i- -)
('

for(j=n;,j>=i;j- -)
. printf ("%3d", j) ;

printf("\n") ;

* * * * * 55555
* * * * 4444
* * * 333
* * 22
* 1

(i) (j)

The code fo~ pyramid (i) is
for(i=n;b'=l;i- -)
{

for(j=l;j<=i;j++)
printf("* ");

printf("\n") ;

12345
1234
123
12
1
(k)

54321
5432
543
54
5
(1)

1 1 111
2222
333
22
1

(m)

*
**

***
**** .

*****
(n)

*
* *

* * *
* * * *

*****
(0)

We can see that line 1 has 5 stars, line 2 has 4 stars and so on. The outer loop is for number of line
and will execute n times, but here we have taken it as a decreasing loop. So for first iteration of oute

. loop, inner loop will execute n times, for second iteration of outer loop inner loop will execufe n-l time
and so on.

For pyramids (j), (k), (1), (m) we'll print values of i, j, (n+ I-j), (n+ I-i) respectively. The pyramids (
and (m) can also be printed by reversing both the loops and then printing i and j.

For pyramid (n), we have to print spaces before printing stars.' The code for it is-
for(i=l;i<=n;i++) /*loop for number of lines*/
{

for(j=l;j<=n-i;j++)
printf(" ");

for!j=l;j<=i;j++)
printf("*");

printf("\n") ;

/*loop for printing spaces* /

. /*loop for printing stars* /

/*for next line of pyramid*/'
}

The code for pyramid (0) is same as this one, only a space is given after star in the printf stateme



----~

Control Statements 101

* * 1 1 5 '*********I

*** *** 123 232 545 ; *******
1* * * **

I

********** 12345 34543· 54345 I

******* \ *** .. *** 1234567 4567654 5432345 ***
********* ********* 123456789 567898765· 543212345 *

(P) (q) (r) (s) (t) (u)

.-__ Third part .
First part ---+I

*****i '------'
Second part

The code for pyramid (p) is
for (i=l; i<=ni i++)
{

/

}

for(j=lij<=n-iij++)
printf(" ");

for(j=lij<=iij++)
printf("*")i

for(j=l;j<i;j++)
printf("*");

printf("\n") i

/*loop for number of lines in pyramid*/

/*loop for spaces (first part)*/

/*loop for second part*/

/*loop for third part*/

/*for next line of· pyramid* /

Here first part and second part are written same as in pyramid (n) and third part is written same as
in pyramid (a).

,
The code for pyramid (q) will be the same, only the range of first for loop for spaces will be from
1 to 2*(n+I-i) and there will be a space after star in the printf statements.----..
The loops for pyramids (r), (s) and (t) will be same as that of pyramid (p), but here we'll take a variable
p and print its value.

For pyramid (r) we'll initialize the value of p with 1 each time before second inner for loop; and then
print the value of p++ in the last two for loops. .

For pyramid (s) we'll initialize the value of p with i before second inner for loop, and then print the
value of p++ in second for loop. After this the value of p is decreased by I and then the value of
- -p is printed in the third for loop.

For pyramid (t) we'll initialize the value of p with n before second inner for loop, and then print the
value of p- - in second loop and p++ in third loop. The vallie of p has to be increased by 2 before
third for loop. The code for pyramid (t) is-
for (i=l; i<=n;~i++) / * loop for number of lines in pyramid* /
{

for(j=l;j<=n-i;j++ /* loop for spaces (first part) */



--"",

printf(" ");
p=n;
for(j=l;j<=i;j++

printf ("%d" ,p- -);

p=p+2;
for (j = 1 ;. j.< i ; j + + )

printf("%d",p++) ;
printf("\n");

I*loop for second part *1

I*loop for third part *1

1 * for next line of pyramid * 1

C in Dr;pth

}

The code for inverted pyramid (u) is
for(i=l;i<=n;i++)
{

for(j=l;j<=i;j++)
printf(" ");

for ( j =1; j < = (n - i) ; j + + )
printf("*"); .

for(j=l;j«n-i) ;j++)
printf("*");

printf("\n") ;

* 1 1 5
*** 123 232 545

***** 12345 34543 54345
******* 1234567 4567654 5432345

******"'** 123456789 567898765 543212345
******* 1234567 4567654 5432345
***** 12345 34543 54345

*** 123 232 545
* 1 1 5

(v) (w) (x) (y) '"

The diamond (v) can be obtained by joining pyramids (p) and (u) so the code is also same as that of
(p) and (u), Note that if n = 5 then the upper pyramid has 5 lines while inverted pyramid has only
4 lines in this diamond. So the loop for the inverted pyramid here will range from 1 to n-L instead of
1 to n. The code for diamond (v) is-
for(i=l;i<=n;i++)
{

for(j=l;j<=n-i;j++)
printf(" ");

for(j=l;j<=i;j++)
printf("*");

for(j=l;j<i;j++)
print·f("*");

printf("\n") ;
}

for(i=l;i<=n-l;i++)
{

for(j=l;j<=i;j++)
printf(" ");



Control Statements

for(j=l;j<=n-i;j++)
printf("*");

for(j=l;j<n-i;j++)
printf("*");.

printf("\n") ;

103

The structure of loops for diamonds (w), (x) and (y) will be same as that of (v), and the logic is similar
to that of pyramids (r), (s) and (t) respectively. Apply the same logic (of variable p) in the second outer
for loop also.

The code for diamond (y) is
for(i~l;i<=n;i++)

{

for(j=l;j<=n-i;j++)
printf(" ");

p=n;
for(j=l;j<=i;j++)

print f ( "%d" ,p- -) ;
p=p+2;
for(j=l;j<i;j++)

printf("%d",p++) ;
printf("\n") ;

}

for(i=l;i<=n-l;i++)
{

for(j=l;j<=i;j++)
printf(" ");

p=n;
for(j=l;j<=n-i;j++)

printf ("%d" ,p- -);
p=p+2 ;
for(j=l;j<n-i;j++)

printf("%d",p++);
printf("\n") ;

In the diamond (x) initialize p with i in first for loop but with n-i in the second for loop.

Exercise
Assume stdio.h is included in all programs;
(1) main()

{

int a=9;
if(a=5)

printf ("It is important to be nice\n");
else

printf ("It is nice to be important\n");

(2) main(



-/"

104

int a=20, b=3;
if(a<lO)

a=a-5;
b=b+5;

printf("%d %d\n",a,b);

I

(3) main (
I {

': int 'a=9,b=O,c=O;
if ( ! a < 1°&& ! b I Ic)

printf ("Difficulties make us better\n");
else

printf ("Difficulties make us bitter\n");

(4.) main (

int i=l, j =9; .
. if(i>=5&&j<5);

i=j+2;
printf("%d\n",i);

(5) main(

int a=O,b=O;
if ( ! a)

{

b=!a;
if (b)

a=!b;
}

printf("%d, %d \n",a,b);

(6) main(
{

int a=5;
begin:
if (a)
{

C in Depth

....

It

printf ("%d
a- -;
goto begin;

(7) main (
{

1/ I a) ;



Control Statements

int a=5;
begin:
if(a)

printf("%d\tn,a);

a- -;
goto begin;

(8) main(
{

int a=2,x=lO;
if(a==2)

if (x==8)
printf("a is equal to 2 and x is equal to 8 n

);

else·
printf("a is not equal to 2 n

);

(9) main(
{

int a=6,b=4;
while (a+b)
{

105

printf( "a
a=a/2;
b%=3;

(lO)main(
{

int i=lO;
do
{

%d, b -%d\nn ,a, b) ;

printf(~i=%d\nn,i);

i=i-3;
}while(i) ;

(11 )main (
{

int i,j=lO;
for(;i=j;j-=2)

printf("%d. ",j);

(12)main(
{

int i,j,x=O;
for(i=O;i<5;i++)

for(j=i;j>O;j- -)



x=i+j+l;
printf("x %d\n",x);

-'", }.

(13) main (
{

C in Depth

int i, index=O;
for(i=O;i<lO;i++)
C' ,

'int i=O;
while(i++<5)

inde'x++ ;
},

printf ("index = %d\n", index);

(14)main(
{

int i;
for(i=1;i<10;i++)

if(i==3)
continue;

printf("%d ",i);

(15)main(
{

int i=l;
while(i<lO)
[

if(i==3)
continue;

printf("%d ",i);
i++;

(l6)main(
{

int i, sum;
for(i=O;i<lO;i+=3)

sum +=i*i;
printf("%d",sum) ;

(17)main(.. {

int c=50;
fort ;c;



Control Statements

c- -;
printf ("c

(18)main( )
{

%d\n",c);

107

char ch= 'A' ;
switch(ch)
{

case 'A': case'B':
ch++;
continue;

case 'C': case 'D':
ch++;

(19)main(
{

int var=2, x=l, y=2;
switch(var)
{

case x:
x++;

case" y:
y++;

(20)main(
{

char ch=' A' ;
while(ch<='D')
{

switch(ch)
{

case 'A': case'B':
ch++;
continue;

case 'C'":
ch++;

printf("%c",ch) ;

(21)main(
{

int n,sum=O;
for(
{

case 'D':



C in Depth

-/"",

scanf("%d", &n);
sum+=p;

if(sum>lOO)
break;

(22)main(
(

int i ,. suml=O, sum2=O;
for(i=1;i<5;i++)

suml+=i;
i=l;
while(i<=i)
{

i++;
sum2+=i;

printf ("%d %d\n",i,suml,sum2) ;

1.

..oJ
2,

3.

4.

5.

6.

7.

8.

9.
10.

11.

Programming Exercise
Write a program to print prime numbers from 1 to 99. (Hint: 'See P5.27, instead of entering a
number, take a for loop that generates numbers from 1 to 99)

~

Write a program to enter a humber and find the reverse of that number.
Input a number and a digit and find whether the digit is present in the number or not, if present
then count the number of times it occurs in the number.
Write a program to acceptlj-ny number n and print the sum of square of all numbers from 1 to
n. ~

Write a program to accept any number n and print the cube of all numbers from 1 to n which
are divisible by 3.
Write a program to accept any six digit number and print the sum of all even digits of that number
and multiplication of all odd digits.
Write a program to find out the value ofx raised to the power y, where x and yare positive integers.
Write a program to accept any number up to six digits and print that in words.
For example- 1265 = one two six five
Wri,te a program to enter a number and test whether it is a fibonacci number or not.
Write a program to print all the pythagorean triplets less than 50. Any three numbers x, y, z are
called pythagorean triplets if x < .Y < z and X2+y2 = Z2
Find the sum of these series up to n terms where x is an integer entered by the user.
I + 2 + 4 + 7 + II + 16 +
1+ 11 + III + 1111 + .....
x + x2 +x3 +x4+ ..
X + x2 _x3 + x4+ .
I/x - l/x 2 +1/x3 -l/x4



Control Statements

Answers

109

(1) It is important to be nice

The variable a is assigned the value 5, and so the if condition becomes true.
(2) 20 8
(3) Difficulties make us better'

(4) 11

There is a semicolon after the if part, and it is considered as null statement.
(5) 0, 1
(6) 5 4 3 2 1

(7) This program runs infinitely, because the goto statement is not inside the if structure.

(8) a is not equal to 2.

Here the else part is paired with the second if, if we want to pair it with the first if then we should
enclose the second if inside parentheses.

(9) a = 6, b = 4

a = 3, b = 1

a = 1, b = 1
a = 0, b = 1
a = 0, b = 1

a = 0, b = 1

The value ofb never becomes zero, and so the condition never becomes false resulting in an infinite
loop.

(10) 10 7 4 1 -2 -5 -8 .

The value of i never becomes zero, resulting in an infinite loop.
11) 10 8 6 4 2

The loop terminates when the value of assignment expression ( i = j ) becomes zero.

12)x.= 6
13) index = 50 .

14) 1 2 4 5 6 '7 8 9
5) This program prints 1 2 and [hen goes into an infinite loop.

6) The variable sum is not initialized to zero, if it is initialized to zero then the result will be 126.
7) c =0

8) Error, continue can't be used ii1side switch.

9) Error, only constant expressions can be used in switch.
_0) DE

Here the continue' statement is inside the while loop.

-1) The loop will enter numbers, and will terminate when the sum of these numbers exceeds 100.
2) 5 . 10



..

Chapter 6

functions

A function is..a self-contained subprogram that is meant to do some specific, well-defined task. A (
program consists of one or more functions. If a program has only one fupction then it must be th
maine ) function.

6.1 Advantages Of Using_Fun.ctions
1. Generally a difficult problem is divided into sub problems and then solved. This divide and conque

technique is implemented in C through functions. A program can be divided irito functions, eac
of which performs some specific task. So the use of C functions modularizes and divides the wor
of a program.

2. When some specific code is to be used more than once and at different places in the progran
the use of functions avoids repetition of that code.

3. The program becomes easily understandable, modifiable and easy to debl!g and test. It beconif
simple to write the program and understand what work is done by each part of the program

4. Functions c'an be stored in a library and reusability can be achieved. .

C programs have two types' of functions-
1. Library functions ...
2. User-defined functions

6.2 Library Functions
C has the facility to provide library functions for performing some operations. These functions are prese
in the C library and they are predefined. For example sqrt( ) is a mathematical lib~ary function whil
is used for finding out the square root of any number. The functions scanf( ) and printf( ) are inp
output library functions. Similarly we have functions like strlen( ), strcmp( ) for string manipulatior

To use a library function we have to include corresponding header file using the preprocessor directi
#include. For example to use input output functions like printf( ), scanf( ) we have to include stdio,
for mathematical library functions we have to include math.h, for string library string .h should'
included. The following program illustrates the use of library function sqrt( ).

/ *P6. 1 Program to
#include<stdio.h>
#include<math.h>
main( }
{

double n, s;
printf ("Enter

find' the square root of. any nunber. * /

a number ") ;



Functions

scanf (''%If'', &n) ;
s=sgrt (n) ;
printf ("The square root of %. 2lf is %.2lf\n" 'n, s );

111

}

Output:

Enter a number : J6
The square root of 16.00 is : 4.00

In this program we have used three library functions - printf( ), scanf( ) and sqrt( }. We'll learn more
about library functions later in this chapter. '-

6.3 User..Defined Functions
Users can create their own functions for performing any specific task of the program. These types
of functions are called user-defined functions. To create and use these functions, we should know about
these three things- ~

1. Function definition .
2. Function declaration
3. Function call

Before discussing these three points we have written two simple programs that will be used for reference.
The first program draws a line and the second one adds two numbers.

/ *P6. 2 Program to draw a line* /
#include<stdio.h>
void drawline (void) ; /*Function Declaration* /
main( )
{

draw1ine( ).;- /*Function Call*/
}

void drawline (void) / *Function Definition* / \
{

int i;
for(i=1;i<=80;i++)

- pr in t f (" _ " ) ;

/*P6.3 Program to . find the sum of two numbers* /
#include<stdio.h>
int sum(int x, inty); /*Function declaration*/
main ( ) . ~,.

{

and b
int a,b, s;
printf ("Enter values for a
scanf ("%d %d", &a, &b) ;
s=sum (a, b);
printf ("Sum of %d and %d is

/I ) ;

/*Function call*/
%d \ n" ,a, b, s) ; \

}

int sum (int x, int y)

int s;

/*Function definition*/

- ----

/



-/"'"

112

S=X+Y;
re'turn s;

6.4 Function Definition

, C in Dept

The function definition consists ·ofthe whole description and codt(of a function. It tells what the functiol
is doing and what are its inputs and outputs. A function definition consists of two parts - a functiOl
header and a funp!ion body. The general syntax of a function definition is-

func_name ( typel argl, type2 arg2, )

'.

local variables declarations;
statement;

return(expression) ;

\

The first line in the\function definition is known as the function header and after this the b..Q.d~ of thl
function is written ~nclo~ed in curly braces'

J

. . ,

The return_type denotes the type of the value that will be returned by the function. The return_typl
is optional and if omi,tted, ~~l!rped __to .bejQcby_default~A function can return. e~ther one value 0

no valqe. If a function doe~ not return any value then void should be wfitten in place of retul'}UyPe

func_name specifies t~e nathe of the function and it can be any valid C identifier. After function name
the argument declarati<i>Ds are given in parentheses, which mention the type and name of the arguments
These are known ~s formal argumen,!Land used to accept values. A function can take any number 0

arguments or even no argument at all. If there are no arguments then either the parentheses can bl
left empty or void can be written inside the parentheses.

The body of function is a compouqd statement (or a block), which consists qf declarations of variables
and C statements followed 'by an optional return statement. The variables declared inside. the fu~ctiOl
are known as local variables, since they are local to' that function only, i.e. they have existence onl;
in the function in which they are declared, they can not be used anywhere else in the program. Then
can be any number of valid C statements inside a function body. The return statement is optional. I
may be absent if the function does not return any valu~.

The function definition can be placed anywhere in the program. But generally all definitions are place<
after the maine ) function. Note that a function definition cannot be placed inside another functiOl
definition. Functiqn definitions can also be placed in different files., . . "

In P6.2 the function definition is-
void drawline (void)
{

int i;
for(i=1;i<80;i++)

printf ("-") ;
}

Here the function is not returning any value so void is written at the place of return_type, and sincl
• it does not accept any arguments so void is written inside parentheses. The int variable iis decfare<

inside the function body' SC' it is a local variable and can be used insid~ this function only.



113

1n P6.3 the function definition is-

int sum (int x, int y)

int s;

s=x+y;
return s;

This. function returns a value of type int ,because int is written at the place of return_type. This function
takes two formal arguments x and y, both of type int. The variable s is declared inside the function
so it is ~ local variable. The formal arguments x and yare also used as local variables inside this function.

6.5 r •••ti•• Call
The function definition describes what a function can do, blJt to actually use it in the program the function
should be called somewhere. A function is ,called by ~iirlply writi~g its ~~n~~ followed by the argument
list inside the parentheses. . ..

func_nam~(argl, arg2, arg3 ...)

These arguments arg I, arg2, ,...are called actual arguments..

Here func_name is known as the called function while the function in which this fl,lnction call is placed.
. known as the calling 'function: For'example in' the program P6.3, maine ) is the calling function, sum()
. the called function and a, b are actual' arguments.' The function call is written on the right hand side
oJ the assignment operator as- . " .

s = sum(a, b);

Even if there are no actual arguments, the function call should have the empty parentheses, For example
in program P6.2, the function call is written as- .. .

drawline( );

When a function is called, the control passes to the called function, which is ex<;cuted and after th1s ,
the control is transferred to the statement following the function call in the calling function. The following

gure shows'the transfer of control when two functions funcl( ) and' func2( ) are called from mainO. '

maine )
{

}

statementl;
funcl( );
statement2; 4--+------1

statement3;
func2( 9, 3J
statement4;
statementS;

funcl( )
{

}

func2( int a, int b)
{

Transfer of control when function is called



114 C in Depth

If the function returns a value, then this function call can be used like an operand in any expression
/'" anywhere in the program. The type and value of this operand will be the type and value of the return

value of the function. For example-

s = sum(a"b); , /*Assigning the return value of sum( ) to variable s*/
q = rriax(x, y)*IO; /*return value of max{ ) is multiplied by 10 and assigned to variable b*/
if ( isprime(x.)' =' =1') /*return value of isprime( ) is used in if condition*/

printf("Number is prime');
printf(",%d\n", sum(a+b) ); /*Return value of sum( ) is printed*/

If the function is declared as void then it cannot be used in this way in any eJSPression. For example
it would be meaningless and invalid to write an expression like this- /

s = drawline( ); . • 1:J;7 I ~

A function call can be used as a statement, if a semicolon is placed after it. In this case if the function
.returns any value, it is just discarded. For example- "'-- /' . .

draw(x, y);
display( a, b, c);
printprimes( );

A function c~ll, cannot occur on the left hand of an assignment statement.

func(x, y) ~ a; /* Invalid */

The code 'of a function is executed only when it is called by some other function. If the function .
defined and not called even once then it's code will never be executed. A function can be called mo

'. than once, so the code is, executed each time it is called. The execution of a function finishes eith
when the closing braces of the function body are reached or if return statement is encountered:

6.6 Function Declaration
I'

The calling function needs information about the called function. If definition of the called function
placed before the calling function, then declaration is not needed. For example if in progra~ P6.3, '"
write the definition of sum( ) beforemain( ), then declaration is not needed.

/*P6.4 Program to
#include<stdio.h>

(-iDt' sum! int x, int
~~..

int .S;'

s ==J:c+.y.i .
:r:eturn' s;

}

main ( )
{ . ,

find
r

the

. y)>.

!

sum of (two· numbers*/

/*Function definition* /

/

It

int a,b,s;
pr'intf ("Enter values for a a1'J.d t! ") ;
scanf("%d %d",&a,&b);
I " '~

s==s~m (a ,,p) i / *Function call * /
'printf("Sum of %d and %d is'%d\n",a,b,s);



Functions 115

Here the definition of sum( ) is written before maine ), so maine ) knows everything about the function
sumO. But generally th~ function maine ) is placed at .the top and all other functions are placed aft~r'
i~. In'this case, function declaration is n·eeded. The function declaration is 'also known -as the function'
prQtbtyp~, .an~ it inf?rms the ~ompiler about the following three things-
1. Name of the'function,:
2. Number and .type of,argumetit~ received by the functi9n.
3. Type of value returned by the function,.

Function declaration tells the compiler that a function with these features will be defined and used later
in the program. The general syntax of afunction declaratioJ'l is- . ,

return_type func_name(typel argl, type2 arg2, .. , .....)j

This looks just like the header of function definition, except that the1;e is a semicolon at the end, The
names of the arguments while' declarihg a functio~ are option~l.· These' are only used for descriptive'
purposes. So we can w~ite the declaration in this way also- , . '.

return_type func_name(typel, type2, ........);
, , .

In program P6.2 the declaration is written as-

void drawline(void); .

In program P6.3 tbe declaration is written as

int sUn:J.(int x,. into y);

Now we'll write two more example programs that use functions.

/ *P5. 5 Program that finds whether a number is even or odd* /
#include<stdio.h>
void f indC int n);

main() .
{

(I- ) 1 co -
. - er~b)~

1

/I ) i

larger of two numbers* /

odd\n", n) ;

even \n" ,n) ;is

int n)

int a, b;.
printf ("Enter two numbers
scanf("%d%d",&a,&b);

r
if (~%2==O)

printf ("%d
else

printf ("%d is

/*P6.6 Program that finds. the
#include<stdio.h>
int ma'x (intx, int y).;
main( )... ~., ,'.

{

}

void find (
{

int num;-·
printf ("Enter a number ".) ;
scanf("%d",&num) ~

find(num); .



116

printf ("Maximum of %d and %d is %d\n",a,b,max(a,bl f;

C in Depth

}

-max ( in t< x, int y)
( c

if (x>y:)
return x;

else
return y;

!-

\

6.7 .return statement
The return statement is used in a function to return a value to the calling function. It may also be used
for immediate exit from the called function to the calling function without rei~ming a value. ,~

This statement can appear anywhere inside the body of the function. There are two ways in. whicb
it can be used- .

return;
t

return ( expression );

Here return is a keyword. -The first form of return statement is used to terminate the function witho
retuming any value. In this case only return keyword is written. The following program uses this form
of return statement.

/*P6.7 Program to understand the use of return statement*/
#include<stdio.h>
void funct (int age, float ht);
main.( )
{

Oint age;,
float _ ht;
printf ("Enter age and height: ) ;
scanf("%d %f", &age, &ht);
funct(age,ht) ;

}

void funct (int age, float ht)
{

if (age>25)
{

printf("Age should be less than 25\n");
return;

}

if (ht<5)·
{

printf ("Height should be more than 5\n");
return;

}

printf("Se)ected\n");

The second form of return statement is used to terminate a function and return a value to the callinl
function. The programs P6.3 and P6.6 use this second form of return statement. The value retu,rne~



Functions 117

by the return statement may be any constant~ variable, expression or even any other function call(which
returns a value). For example in program P6.3 we can directly write return (x+y) instead of-taking
a variable and returning,it. Similarly in program P6.6 we can directly wrife return ( x>y ? x :y)

Some other examples of valid return statements are-
return 1;

return ~;
return ( x+y'!'z );
return ( 3 * sum(a, b) );

It is optional to enclose the returning value in parenthese,s:

We can use multiple return statements in a function but as soon as first return statement is encountered
the function terminates and all the statements following it are not execut~d.' , "

The next function compares two dates( dllmllyl and d2/m2/y2) and returns 1 if first date is smaller,
returns -1 if second date is smaller , returns 0 ,if both dates are same. In tlii~' function we have used '
7 return' statements.

int cmpdate( int d1" int Im1, int y1, int d2, int m2, int y2)

if (}i'1<y2),
'return 1;,

,if (y1>y2)
return -,1;

if (ml<m2)
return 1;

if (m1>m2)
return -1;

if (dl<d2)
return l;

if(d1>d2)
return -1;

return 0;
}

The next program uses a function tha~ finds o\t the factorial of a number,

/*P6.8 Program to find out the f'actorial of a number*/
\

#include<stdio.h> '
long int factorial (int n)\;
main") ,'~

{

int num;
printf (;\Enter a number ").;
scanf("%d",&num) ;
if (num<O)

printf ("No factorial of negative number\n,");
else

printf ("F,actorial of %d is !!?l:d\n", num, factorial (num) ) ;
}

long int factorial (int n)



/ * P6. 9 Program to understand formal and actual arguments * /
#include<stdio.h>

A function can r:eturn only one value. If we want to return more than one value then we have to use
another technique discussed in further chapters,· It is incorrect to try to return more than one value
using comma.

return 1, 2, 3;

Here this expression is using comma operator and hence only the rightmost value will be returned,

If no value is to be returned ftom the function then it should be declared as void, All functions, which
are not of void type, return a value. If the function is not of void type and no value is returned through
return statement, then a garbage value is returned automatically.

If the value returned is not of the type specified in the function definition then it is converted to that
type if the conversion is legaL

6.8 Function Arguments
The calling function sends some values to the called function for communication; these values are called
arguments or parameters,

Actual arguments: The arguments which are mentioned in the function cali are known as actual
arguments, since these are the values which are actually sent to the called function. Actual.arguments
can be written in the form of variables, constants or expressions or any function call that returns a
val~e, For example- "

fun(x,)

func.(a*b, c*d+k)
. func( 22, 43 )
func( 1, 2, sum(a, b) )

Formal arguments: The name of the arguments, ~hich are mentioned in the function definition are
called formal or dummy arguments since they are used just to hold the values that are sent by the calling
function.

These, formal arguments are simply like other local variables of the· function which are created when
the function call srarts and are destroyed when the function ends. However there are Jwo differeqces,
First is that fornml arguments are declared inside parentheses while other local variables are de~lared

at the beginning of the function block. The second difference is' that fopnal arguments are autonlatically
initialized with the values of the achial arguments passed, while other local variables are assigned values
through the statements written inside the function body.

The order, number and type of actual arguments in the function call should match with the order, number
and type of formal arguments in the function definition,

118

int i;
long int fact:=.l;
if (n====O),

return 1;
for(i=n;i>l;i- -)

fact*==i;
return fact;

C in Depth



Functions

main( )
{

int m=6.n=3;
prinif(~~d\t":multiply(~,n)J;

print f ( "%d \ t" ,'mnlt lply"(is: ,'1;1),' i";"
printf("%d\t".multiply(m+n.m-n));
printf("%d\n".multiply(6.srim(m,n))) ;

}

mul tiply (int x. int y)

{

int ~;

p:::x*y;
return p;

}

sum ( in t x , in t. y)
{

return X+Y;

119

}

Output:

18 60 27 54

In this program, funclion nlultiply( ) is called 4 times. The variables x and y ilre the formal arguments
of multiply( ). First time when the function is called: actual arguments are var"iable"s m and n, so "the
formal arguments x and y are initialized with the vafues of m and nand p= 18 is returned. Second time
function is .called with actual argm'hents 15 and 4, so this time x and yare initialized with values 15
and 4 respectively, hence p=6~ is returned. Similarly third time x and y are initialized with values m+~=9
amd m-n=3 respectively, hence p=27 is returned. In the fourth call the first argument is a constant
value (6), while the second argument is a function call. So this time, x is initialized by 6 and y is initialized
by the value returned by the function sum( ) i.e. 9. Hence this time p=54 is returned.

The names of formal and actual arguments maybe same or different, because they are written in separate
functions.

/ *P6" 10 Program to understand formal and actual arguments * /
#include<stdio.h> .
main ( ) .
{

int a=6.b=3;
fu~c (a, b); 
func (15. 4) ;
func(a+b.a-b) ;

}

func (int a. int b)

printf ("a %0, b %d\n".a.l::!);
}

Output:

a := 6

a = 15

a=9

Q = ~

b = 4

b = 3



120 C in Depth

'"
In the above program we can see that the values of a and b inside maine ) are 6 and 3, while a imd
b inside func( ) are initialized with values of actual arguments sent on, each call. Any changes made
to the formal arguments inside the function do not affect the actual arguments.

6.9 Types Of Functions
The functions can be classified into four categories on the basis of the arguments and return value.

1. . Functions with no arguments and no return value.

2. Functions with no arguments and a return value.

3. Functions with arguments and no return value.

4. Functions with arguments and a return value.

6.9.1
/

Functions With No Arguments And No Return Value

I' I

Functions that have no arguments and no return value are written as
void f,unc (voiC!) ;
main( ) .'
{

func ( ) ;

}

void func (void).
{

statement;

In the above example, the function func( ) is called by main ( 2and the function definition is written
after the maine ) function. As the function' func( ) has no arguments, maine ) can not send any data
to func( ) and since it hqs no return statement, hence function can not return any value t; maine )j
There is no communication between the callipg and the called function, Since there is no return value
these types of functions cannot be ,used as operands in expressions, The function drawline( ) in P6.•
is an example of these types of functions, Let us see one more example program-

/*P6.11 Program that uses a function with no arguments and' noretur:J
values*/
#include<stdio.h~

void dispmenu ~void) ;
malll'( ) .

{

int choice;.
dispmenu'( ) ;
printf ("Enter your choice :"};
s~anf("%d",&choice);

}

void dispmenu (void
{

printf (" 1. Create database\n");
printf("2.Insert new record\n");
printf("3.Modifya record\n");



Functions

printf("4.Delete a record\n")i
printf("5.Display all records\n") i

printf("6.Exit\n") i

6.9.2' Function With No Arguments But A Return Value

These types of functions do not receive any arguments but they can return a value.

int func (void) i,

. main( l " .
{ ,

intr i

r=func ( );" 'l

}

int func (yoi,d)

return (expression) i

}

The next program uses a function of this type', .

121

/*P6.12 Program that returns the - sum of squares of all odd numbers from
1 to 25*/
#include<stdio.p>
in,t . func (void) i

main ( )
{

printf ("%d\n".' func ( ) ) i
}

. int func;: (void).
{

'int num, s=o i

for(num=linum<=25inum++)
{

if (num%2 !=O)·
s+=num*num.;

return s i '

}

Output:

2925

6.9.3 Function With Arguments But No Return Valu,e

These types of functions have arguments, hence thecalling function can send data to the called function
but the called function does not return any value, These functions can be writtel1.as-



122

void fur~c (int, int) ;
main ( )

func(a,b) ;

}

void func,( int c, int d)
{

C in Depth

statements

Here a and b are actual arguments which are used for sending the value, c and d are the formal arguments,
which accept values' from the actual arguments. ' ' ,

}

else
printf ("No triangle possible with these sides\n"); .

float a,b,c;
printf ("Enter' the sides of triangle ") ;
scanf("%f~f%f",&a,&b,~c) ;
if (a<b+c'&& b<c+a &!ic c<a+b)
{ , ~ .

type (a, b, c),;,
area(a,b,c) ;

/*P6.13 Program
#include<stdio.h>
#include<math.h>
void type (fl,oat
void,,~ area-( float
main'( )"
{

to find the type

~,float b, float c);
a,ftoat b,float c);

and area of a triangle.*/

}

void type(float a, float b, float c)

c)

is equilateral \n") ;
c==a)
is i:sosceles\n");

b,floata,floatarea(float

if«a*a)+(b*1;»==(c*c) II (b*b)+(c*c)==(a*a) II (c*c)+{a*a)=={b*b))
printf ("The triangle is right angled triangle\n");

if(a==b && b==c)
printf ("The triangle

else if {a==b II b;==c II
printf {"The triangle

else
printf ("The triangle is scalene\n");,

i}

void

float s; a,rE!a;
s'= (a+b+~) !2 i
area=sqrt(s*(s-a)*{s-b,*{s-c)) ;
printf ("The area 'of 'triangle = %f\n", area) ;



Functions 123

6.9.4 Function With Arguments And Return Value

These types of functions have arguments, so the calling function can send data to the called function,
, it can also return any value to the calling function using return statement. This function can be written
as-

int func (int, int) ;
main ( )
{ ,

int r;

r=func (a, b) ;

func(c,d) ;
)

int func (int a, int b

return (expression)';

Here return statement returns the value of the expression to the calling function. The functions sumO,
multiply( ), max( ) that we had written earlier' are examples of these types of functions. Let us take
one m'ore example program-

/*P6.14 Program to find the sum of digits of any number*/
#include<stdio.h>
int sum (int n);, '

main (J
{

int num;
pr'intf ("Enter the number ") ;
scanf("%d~,&nu~) ;
printf ("Sum of digits of %d is %d\n", num, sum(n,um) );

}

int sum (int n)

c:::::

int i, sum=O, rem;
whiletn>O)" '
{' .

rem=n%10;
sum+=rem;
n/=10;

return .( sum) ;

/*rem takes the value of last digit*/

/ * skips the last, digi t of number* /

}

While describing the different type of functions, we have assumed arguments and return values of type
int for simplicity. These values can be of arty data type.



124

6.10 More About Function Declaration

C in Dep

The main thing about the placing of function declaration is that it should be before the function c
Generally all the function declarations are written before the maine ) function. This way the functf
declaration is accessible to all functions. It is also possible that we declare the function only inside .those
functions that call it Note that if function definition occurs before the function call, then declaratio
is not needed.

If a function returns a value of type int or char then it is not necessary to declare the function, because
by default every function returns an int value. The compiler assumes that any function, for which return
type is not specified in the definition, will return an int value. But if the function returns a value other
than int such as float, double, pointer, array, structure etc then it is necessary to declare it before the
function call.

Declaration of a function has two main uses. Firstly, it tells the compiler about the return type of the
function. Secondly, it specifies the type and number of arguments of the function. So it can be used
to check any mismatch between the number and type of arguments in the function definition and function
call. We had seen that it is optional to declare the functions of type int or char, but it is a good practice
to declare all func'tions since we can check the number and type of arguments in function call. So in
this way we can prevent bugs, which could occur due to wrong number and type of arguments in
the function call.

6.11 Declaration Of Functions, With No Arguments

• I
If a function has no arguments, then either the parentheses can be left empty or void can be written
inside the parentheses. But it is better to write void because when parentheses are empty, the compiler
assumes that there is no information about the arguments. There can be no arguments or any number
of arguments, So the compiler won't be able to check any mismatch in the type and number of arguments
in function call.

Similarly void c~n be specified as return type if a function does not return any value. This will avoid
accidental use of function in any expression. For example- ..

/ *P6. 15 Program to understand declaration of functions with no arguments* /
#include<stdio.h>
void func;l ( ) ;
vciid func2 (void) ;
main ()
{

funcl (1.3, 'a',) ;
func2 (1.3, 'a',> ;

}

void 'funcl,( )
{

/*will not generate any error*/
/ *will generate error* /

printf("\nFunctionl\n");
}

void func2 (void )
{

print~("\nFunction2\n") ;
}

Here we see that funcl ( ) can be called with wrong number and type of arguments and it will not show



Functions 125

any compilation error, so it can be a bug hard to find. It is not possible to call the function func20
.hi.Wit lany argument.

6.12 If Declaration Is AbsentvO'
If act~al arguments are more than the formal argument& tI1en the extra a~mal arguments are just ignored.
If actual arguments are less than the /ormal arguments,' then the extra formal arguments receive garbage
value.
func (int a, int b, int . c)
{

func(l, 2, 3, 4, 5); /*Actual arguments more than formal*/

Here the last two arguments are just ignored. a = 1, b = 2, c = 3

func(l, 2 ); /*Actual arguments less than formal*/

Here the third argument receives garbage value. a = 1, b = 2,c = garbage value

If there is a type mismatch between a corresponding actual and formal argument, then compiler tries'
to convert th~ type of actual argument to the type of the formal argument if the conversion is legal.
otherwise a garbage value is passed. to the formal argument.

Execution of every C program always begins with the function maine ). Each function is called directly
or indirectly in maine ) and after all functions have done their operations, control returns back to mainO.
There can be only one maine ) function in.aprogram.

The maine ) function is a user defined function but the name, number and type of arguments are predefined
in the language. The operating system calls. the main function and maine ) returns a value of integer
type to the operating system. If the value returned is zero, it implies that the function has terminated
successfully and any nonzero return value indicates an error. If no return value is specified in maine
) then any garbage value will be returned automatically. Calling the function exit( ) with an integer value

When a function is .called .with more than one argument,t~en the the order of evaluation of arguments
is unspecified. This order of evaluation is not important in function calls like multiply( m, n) or
multiply(m+n;' m-n). But if we have a function ~an .like this: . '. . .

int m = 3, k;
k = multiply( m, m++);

Now here if the first argument is evaluated first then value of k will be 91 an9 if the second argurrtent
is evaluated first, the value of k will be 12. But since the order of evaluation of arguments is unspecified
in C and depends on compiler, hence the result may be different on different compilers. Similarly if
we write-

int i = 10;
printf("%d _%d %d':~. - -i, i++, i); .

Here also the result is unpredictable. So it is better to avoid these types of argument expressions that
can produce different results on different compilers.

6.13

6.14

Order Of Evaluation Of Function Arguments

maine ) Function



is equivalent to returning that value from maine ). The function maine ) can also take arguments, which.
will' be discussed in. further chapters.

The definition, declaration and call of maine ) function-
- • . - _. I •

Function Declaration - By the C compiler
Function Definition - By the programmer'
Function Call - ~y the operating system

126 C in Depth

6.15 Library Functions.

local variables declarations;

Old Style Of Function Definition

Old Style Of Function Declaration

6.17

6.16

The old style of writing function definition is slightly different from the one we have studied. Altho _
this style is no longer used but the compilers still support it.

The old style declaration of functions does not inform the. compiler about the type and number 0

arguments. The syntax of old style declaration is-

return_type func_name( );

The parentheses are always empty even if the function receives arguments. This conventioQ is support
in new compilers also so that the old programs can be compiled using the new compilers, But
convention is not used now since the new convention is better and provides more information to
compiler.

The library funct.ions are formally not a part of the C language, but they are supplied with every C
compiler. The source code of the library functions is not given to the user. These functions are
precomp'iled and the user gets only the object code. This object code is linked, to the object code of
your program by the linker. Different categories of library functions are grouped together in separate
iibraiy files: When we call a library function in our program, the linker selects the code of that function
from the library file and adds it to the program.

The definition, declaration and call of library functions-
Function Defini~io~ - Predefined, precompiled and present in the library.'
Function Declaration. - In header files ( files with a .h extension)
Function Call - By the programmer

To use a library function in our program we should know
(i) Name of the function and its purpose
(ii) Type and number of arguments it accepts
(iii) Type of the value it returns
(iv) Name ,of the header file to be included.

We can deflne any function of our own with the same name as that of any function in the C library.
If we do so then the function that we have defined will take precedence over the library function with
the same name. The standard library functions are discussed in chapter 18. "

return_type func_name(argument list)
argument declarations
{



Functions

statements;
returnlexpression);

127

The coinpilersbased on K&R C support t1).is syntax while the new compilers based on ANSI C support
bothJhe ways of writing function headers. Let us see "'in example of function definition written in old·
style- . . .

float func1Ia,b,z)
inta, b;
float z;
{

float s;
s=la+b)/z;
return z;

Here are few more programs on functions.

1 *P6. 16 Program to find the reverse of a number and check whether it
is a palindrome or not.
Palindrome is a number that remains same when reversed. ~I
#include<stq.io. h> j

int reverse (int n);
mai~1 )" .

{

iI!:t num;,
printf I "Enter a number .") ;
scanf("%d",&num) ;
printf ("Reverse of ,%d is .%d\n", nu;n, rever.se Inurn) ) .;
iflnum==reverse(num) )

pri~u.t.f l "..l\Tl.U:O.D.er j s oR ;...:.~..J. i ..'ODro_wJ;I }_T'J 1/" ,.
else

printf I "Number is not a palindrome\n");
}

reverse,1 int . nj
{

iIl;t rem, rev=O;.
while In>O)'
{

rem=n%;l.O;
re.v=rev * 10 +re:m;
n/=10;

return rev;
}

Output:
Enter the number: g113
Now the number is : 3113
Number is a palindrome

I*P6.17 Program to find whether the number is prime or not.*1



128 C in Depth

#i~clude<stdio.h>

#include<math.h>
int isprime (int n);
main ( )
{

int num;
printf ("Enter a number ") ;"
scanf("%d", &num);
if(isprime(num))

printf ("Number is prime\n");

else
printf ("Number is not prime\n");

}

int isprime (int n)

int i,flag=1;
tor (i=2; i<=sqrt (n) ;'i++)
{

if(n%l==O)
{

flag=O;
breCjlk;

return (flag);

/*P6.18 Program to p:r;int all prime numbers less than 500*/
#include<stdio.h>
#include<math.h>
int isprime (int n);
main ( )
{

int i;
for(i=1;i<=500;i++)

if (isprime (i))
printf("%d ",i);

}

int isprime (int n)

I

/*P6.19 Program to print twin primes less ,than 500
odd numbers are both prime (e.g. 17, 19) then. they
primes.*/
#include<stdio.h>
#include<math.h>
int isprime (int n);
main ( )

If two consecutive
are known as twi



_":unctions 129

int i=3,j;
while(i<500)
{

*P6.20 Program .to convert a decimal number to binary number* /
-include<stdio.h>
: ng int binary (long in.t num);
:::ain ( )

:...:It isprirne ( int n)

j =i;
i=i+2;
if(isprime(j) && isprime(i»

printf ("%5d %5d\n", j, i) ;

" ) i

~ld\n",num,binary(num) );

decimal number

%ld Binary =

long int num;
printf("Enter the
scanf("%ld",&num) ;
printf ("Decimal

:ong binary (long int num)

long rem, a=l, bin=O;
while(num>O)
{

rem=num%2;
bin=bin+rem*a;
num/=2;
a*=lO;

".

)

return bin;

e logic used in this program is discussed below

_ ppose decimal number is 29

Quotient Remainder
29/2 14 1 MSB
14/2 7 0
7/2 3 1
3/2 1 1
1/2 0 1 LSB

1*0 ~ 1*10+ 1*100 + 0*1000 + 1*10000
= 10111



By this method we can get binary equivalents of decimal numbers upto 1023 only, since for numben
more than 1023(Binary - 1111111111), the binary equivalents will exceed the range of long int. In the

-next chapter we'll see a better method to print binary numbers.

130 C in Depth

I *P6. 21 Program to raise a floating point number to an integer powei
eg an where a is floating point and n is· integer value* I
*include<stdio.h>
main ( )
{

float a;
int n;

'float power (float a, int n);
printf (\\Enter base ") ;
scanf ("%f" ,\&a) ;
printf ("Enter exponent \\) ;
scanf (\\%d" ,&n); -
printf(\\%f raised to poweI-%d is %f\n",a,n,power(a,n»;

}

float power (float a, int n)
{

int i;
float p=l;
if(n==O)

return 1;
else

for(i=l;i<=abs(n) ;i++)
p=p*a;

if (n>O)
return p;

else
return lip;

}

6.18 Local, Global And Static Variables

6.18.1 Local Variables

The variables that are _defined within the body of a functioQ or a block, are local to that functic
block only and are called local variables. For example-
func ( )
{

int_ a, b;

Here a and b are local variables which are defined within the body of the function func( ). Local var
can be used only in those functions or blocks, in which they are declared. The same variable
may be used in different functions. For example-



=- llctions

int a=2,l;>=4;

- nc2 ( )

int a=15,b=20;

131

ere values of a = 2, b = 4 are local to the function funcl( ) and a = !5, b = 20 are local to the
ction func2( ).

....18.2 Global Variables

_ e variables that are defined outside any function are called global variables: All functions in the prog~am

access and niodify global variables. It is useful to declare a variable global if it is to be used by'.
y functions in the program. Global variables are automatically initialized to 0 at the time of de~laration.

*P6.22 Program to understand the use of global variables* I
=·nclude<s~dio.h>

aid funcl (void) ;
-aid func2 (void) ;

:.nt a"b=6;
~in( )

printf("'Inside r,nain()
tuncl();
func2 ( ) ;

-oid. funcl (void

a %d, b %d\n",a,b)

printf ("Inside funcl ( )

- id func2 (void)

a = %d, b %d\n", a, b);

int a=8;
print f (" Inside func2 ( ) a = %d, b = %d\n",a,b);

tput:

Inside maine ): a = 0; b = 6
Inside funcl( ) : a = 0, b = 6
Inside func2( ): a = 8, b = 6

ere a and b are declared outside all functions henet; they are global variables. The variable a will be
'tialized to 0 automatically since it is a global variable. Now we can use these variables in any function.
func2( ), there is local variable with the same name as global variable. Whenever there is a conflict
tween a local and global variable, the local variable gets the precedence. So inside func2( ) the value



132

of local variable gets printed.

c
1 6.18.3 Static Variables'

C in Depth

Static variables are decla~ed by writing keyword static in front of the declaratiop.

static type var_name;.

A static variable is initialized only once and the value of a static variable is retaine~ between fu:~ctiOl

calls. If a static variable is not initiali~ed then it is automatically initialized to O~

/ *P6. 23 Program to understand the use of static variables* /
#includecstdio.h>
void fun.c.(void);
mainJ>
{

func (J ;
func ( ) ;
func ( ) r

b::10;.
'%d b = %~\n" ,a,b);

b = 10
b = 11
b = 12

Recursion

int a=lO;
static int
printf ("a
a++;
b~+;

6.19

}

Output:

a = 10
a = 10
a = 10

}.
v~idfunc.(void)
{

Recursion is a powerful technique of writing a complicated algorithm in an easy way. Accordin
this technique a problem is defined in terms of itself. The problem is solved by dividing it into s
proqlems, whic~ are similar in nature to the original problem. These smaller problems a~e solved
their solutions are applied to get the final solution of our original problem.

To implement recursion technique in programming, a function should be capable of calling its~lf

this facility is available in C. The funG-tion thaLcallsjtself~'inside.£unction body}..again~and a ain is
!l.s a recursiie_fune.1i.on. Inrecu~n the calling function and the called function are same. For ex
main () .. >,

{

Rete 'b' is a static variable. First time when the function is called 'b' is initialized to 10. Inside
function, value of 'b' becomes 11. This value is retained and when next time the function is call'
value of 'b' is 11 and the initialization is neglected. Similarly when third time function is called,
of 'b' is 12. Note that the variable 'a', which is not static is initialized on each call and its val
not retained.



Functions

rec ( ) ;

}

rec( ), ,
{

rec ( ); ----I.~ recursive call

133

6! = 6 * 5!

5! = 5*4!

Here rec( ) is called inside the body of f~nction rec( ). There should be a terminating condition to stop
recursion, otherwise rec( ) will keep on calling itself infinitely and will never return.

if ( ... ) /*terrninating condition*/

rec ( ) ;

Before writ~ng a recursive function for aproblem we should consider these point-s-
1. We should be able to define the solution of the problem in terms of a similar type of smaller problem.

, At each step we get closer to' the final' solution of our original problem.
2. There should be a terminating condition to stop recursion.

Now we will take some problems and write recursive functions for solving them.
(i) Factor~al'

(ii) Power
(iii) Fibonacci numbers,
(iv) Tower of hanoi

We know that' the factorial of a positive integer n can be found out by multiplying all integers from
1 to n.

n! = I * 2 '" 3 * * (n-l) * n

This is the iterative definition of factorial and in the previous chapter we had written a program to compute
factorial using loop. Now we'll try to find out the recursive definition of factorial.

We know that 6! = 6*5*4*3*2*1

We can write it as-

Similarly we can write

So in general we can write

n! = n * (n-l)!

Now problem of finding out factorial of (n-l) is similar to that of finding out factorial ~fn, but it is
definitely smaller in size. So we have defined the solution of factorial problem in terms of itself. We
know that the factorial of 0 is 1. This can act as the terminating condition. So the recursive definition
of factorial can be written as-



134

n! = {: •
(n-l) !

n=O

n>O

C in Depth

Now we'll write a program, which finds out the factorial using a recursive function.

"

winding phase

/*P6.24 Program to find the factorial of a number by recursive method* /
#include<stdio.h>
long fact (int n);
main ( )
{

int num;
printf ("Enter a number ") ;
scanf("%d",&num);
printf ("Factorial of %d is %ld\n", num, fact (num) ) ;

}

long fact (int n)
{

if (n==O)
return(l) ;

else
return(n*fact(n-l» ;

This function returns I if the argument n is 01 otherwise it returns n*fact(n-l). To return n*fact(n-.
1), the value of fact(n-l) has to be calculat~d for which fact( ) has to be called again but this time
with an argument of n-l. This process of calling fact( ) continues till it is called with an argument
of 0,

Suppos,ewe want to find out the factorial of 5.

Initially main( ) calls factorial(5)
Since 5>0, factorial(5) calls factorial(4)
Since 4>0, factorial(4) calls factorial(3)
Since 3>0, factorial(3) calls factorial(2)

. Since 2>0, factorial(2) calls factorial(1)
Since 1>0, factorial(J) calls factorial(O)

When'factorial( ) is called with n=O then the condition inside if statement becomes true, so now the
recursion stops and control returns to factorial(l)

Now every called function will return the value to the previous function. These values are returned in
the reverse order of function calls.



Functions 135

Recursive functions work in two ph,ases. First one is the winding phase and the next one is unwinding
phase. In winding phase the function keeps on calling itself. The winding phase stops when the terminating
condition arrives in a call, now the unwinding phase starts and the called functions return values in
reverse order.

In the above case the function factorial( ) is called 6 times, but there is only one copy of that function
in memory. Each function call is different from another because the argument supplied is different each
time.

ow we'll write a recursive function for finding out the an.

The iterative definition for finding an is

an = a * a * a * n times

The recursive definition can be written as-

{
1 n=O

n>O

j*P6.25 Program to raise a floating point number· to a positive integer
sing recursion* /

winclude<stdio.h>
::loat power (float a, int n);
:nain ( )
{

float a, p;
int n;
print~ ("Enter a and n ") ;
scanf("%f%d",&a,&n) ;
p=power(a,n) ;
printf("%f raised. to power %d is %f\n",a,n,p);

::loat power (float a, int n)

if(n==O)
return(l) ;

else
return(a*power(a,n-i)) ;

PS.20, we had written a program to print the fibonacci series. Now we'll write a recursive definition
:or finding fibonacci numbers.

Jib(n) ~{
1

fib(n-l) + fib(n-2)

n=O or n=l

n>l

•

*P6.26 Program to generate fibonacci· series using recursion* /
·nclude<stdio.h>



136

main ( )
{

int nterms, i;
printf ("Enter number of terms ") ;
scanf ("%d", &nterms);
for(i=O;i<nterms;i++)

printf("%d ",fib)i»;
. -"

printf("\n") ;

C in Depth

int fib(int n) /*recursive function that returns nth term of
fibonacci series* /

6.19.1 Tower Of Hanoi

if (n==O Iln==l)
return(l);

else
return(fib(n~1)+fib(n-2» ;

The problem of Tower of Hanoi is to move disks from one pillar to another using a temporary p
Suppose we have a source pillar S which has finite number of disks, and these disks are placed
it in a decreasing order i.e. largest disk is at the bottom and the smallest disk is at the top. Now

I

want to place all these disks on destination pillar 0 in the same order. We can use a temporary p
T to place the disks temporarily whenever required.. The conditions for this game are-
1. We can move only one disk from one pillar to another at a time.
2. Larger disk cannot be placed on smaller disk.

Suppose the number of disks on pillar S is n. First we'll solve the problem for n=l, n=2, n=
then we'll develop a general procedure for the solution.

Here S is the source, 0 is the destination pillar' and T is the temporary pillar.

}

The difference frolJ1 previous two functions (factorial and power) is that here the function fib( ) i
called two times inside the function body. The following figure shows the recursive calls of functio
fib( ) when it is called with argument 5.



Functions 137

For n=l S T D

ill
. S T D

ill
S-7D

S-7 D means move the disk from pillar S to pillar D.

For n=2

S T. D S T D S T D S T D

ill ill ill ill
Initial position S-7T S-7D T-7D

(i) Move disk 1 from pillar S to T

(ii) Move disk 2 from pillar S to D

(iii) Move disk 1 from pillar T to D

For n=3

( S-7T )

( S-7 D )

( T-7D )

ill ill ill ill
Initial position

S T D

ill
S-7D S-7T D-7T

STD STD STD

ill ill ill
S-7DT~T-7SS-7D

(i) Move disk 1 from pillar S to D (S-7 D)

(ii) Move disk 2 from pillar S to T (S-7 T)

(iii) Move disk 1 from pillar D to T (D-7 T)

(iv) Move disk 3 from pillar S to D (S-7 D)

(v) Move disk 1 from pillar T to S (T-7 S)

(vi) Move disk 2 from pillar T to D (T-7 D)

(vii) Move disk 1 from pillar S to D (S-7 D)

These were the solutions for n=l, n=2, n=3. From these solutions we can observe that first we move
n-l disks from source pillar (S) to temporary pillar (T) and then move the largest disk to destination
pillareD). So the general solution for n disks can be written as-

1. Move upper n-I disks from S to T.
2. Move nth disk from S to D.

3. Move n-I disks from T to D.

To move n-I disks from S to T, we can use D as the temporary pillar, and to move n-I disks from

•



138

T to D, we can use S as the temporary pillar.

Move disk from source to dest n=l

tofh( n, source, temp, dest) =

tofh(n-l, source, dest, temp)

Move nth disk from source to dest n>1

tofh(n-l, temp, source, dest)

C in Depth

/*P6.27 Program to solve Tower of
#include<stdio.h>
main(

Hanoi problem using recursion* /

char source='S' ,temp='T',dest='D';
int ndisk;
printf("Enter the number of disks ");
scanf("%dU,&ndisk) ;
printf ("Sequence is : \n U

) ;

tofh(ndisk,source,temp,dest) ;
}

tofh (int ndisk, char source, char temp. char dest)
{

if (ndisk>O)
{

tofh(ndisk-l, source,dest, temp) ;
printf ("Move Disk %d %c->%c\n U,ndisk,source,dest);
tofh(ndisk-l,temp,source,dest) ;

}

}/*End of tofh()*/



Functions 139

...:.--_-.-~.- tofb (1 , S, T, D)-S_7 D
________ tofb(2, S,~T)- S_7T

------- tofb(l, D, S, T)-D_7T

/

tofb(3, S,~) . S_7D
. tofb(1, T, D, S)-T_7S

tofb(2, T, S, D) T_7 D
~ tofh(1, S, T, D)-S_7D

tofb(4, S, D, T) S_7T

\

tofb(l, D, S, T)-D_7T
_______ tofb(2, D, 1:...-S)- D_7S

------ tofb(1, T, D, S)-T_7S
tofb(3, D, S T) D_7T
~ - tofh(1, S, T, D)-S_7D

tofb(2, S,~ . S_7T .
. tofb(l, D, S, T)-D_7T

tofb(5, S, T~ D)-·-----------------------S_7D'
_----tofb(l, T, D, S)-T_7S

________. tofb(2, T,~ T_7 D
tofb(l, S, T, D)-S_7 D

/

tofb(3, T, D, S),-----------------T_7S
~ tofb(1, D, S, T)--D_7T

tofb(2, D, T, S)~---------D_7S
to£11( 1, T, D, S)-T_7 S

tofh(4, T, S, D) T_7 D .

\

- tofb(1, S, T, D)-S_7D
____ tofb(2, S,~ . S_7T .
~ to£11(1, D, S, T)--D_7T

tofb(3, S, T, D) S_7 D---=---- . to£11(1, T, D, S)-""-T_7 S
------ tofb(2, T, S, D) T_7 D

. ~ tofb(1, S, T, D)-S_7D

6.19.2 AdvantagesAnd Disadvantages Of Recursion

The use of recursion makes the code more compact and elegant. It simplifies the logic and hence makes
the program easier to understand. But the code written using recursion is less efficient since recursion

.is a slow process because of many function calls involved in it.

Most problems with recursive solutions also have an equivalent non recursive(generally iterative) solutions.
A non recursive solution increases performance while a recursive solution is simpler.

6.19.3 Local Variables In Recursion

We know. each function has some local variables that exist only inside that function. When a function
is called recursively, then for each call a new set of local variables is created(except static), their name
is same bu't they are stored at different places and contain different values. These values are remembered
by the compiler till the end of function call, so that these values are available in the unwinding phase.



140 C in Depth.

6.20 Some Additional Problems

Problem 1

" ) ;

\\) ;

/
. int num, base, resul t;
char choice;
printf("Enter 'b' for binary and '0' for octal
scanf("%c",&choice) ;
printf ("Enter the number
scanf(~%d",&num);
if (choice==' b' )

base=2;
else

base=8;
result=func(num,base) ;
printf ("Decimal number is %d\n", result) ;

Write a program to convert a binary or octal number to a decimal number depending on user's choice.
. / *P6 .28 Program to convert a binary or octal number to a dec imal number* /
#include<stdfo.h> .
main ( )
{

}

func(int n,int base)
{

int rem,d,j=l,dec=O;
while(n>O)
{

rem=n%lO; /;; taking last digit * /
d.=rem*j;
d~c+=d;

j*=base;
n/=lO; / * skipping last digit * /

return dec;
}

Problem 2

Write a program to implement these formulae of permutations and combinations.

The formula for number of permutations of n objects taken r at a time-

p(n, r) = n! / (n-r)!

The formula for number of combinations of n objects taken r at a time is

c(n, r) = n! / r! * (n-r)!

This can also be written as

·c(n, r) = p(n, r) / r!

/*P6.29 Program to find out permutations and combinations* /
#include<stdio.h>
long factor.ial (int) ;



Functions

long perm(int, inti i

long comb (int, int) i

main( )
{

int n,r;
printf'( "Enter n ") ;
scanf ("%d" ,&n) ;.
printf ("Enter r ") ;
scanf ("%d" ,&r) ;
printf ("Total combinations are
printf ("Total permutations are

}

long comb (int n, int r)
{

long c;
c=perm(n,r)/factorial(r) ;

. return c;
}

long perm(int n, int r)
{

long p;
p=fac~orial(n)/factorial(n-r);
return p;

}

long factorial (int k)
{

long factc=l;
while ( k>O
{

fa'ct *=k;
k- -;

return fact;

Problem 3

rite a program to print Pascal's triangle,

1

2 1

3 3 1
464
5 10 10 5 1
6 15 20 15 6

%ld\n",comb(n,r» ;
%ld\n",perm(n,r» ;

141

*P6. 30 Program to print Pascal's triangle* I
-~nclude<stdio.h>

_ ng factorial (int} ;
: ng comb(int, int);

I
.'

.-.l_....... _



142

main(
{

int i,j,k;
printf ("Enter number of rows
scanf ("%d", &k) ;
for(i=O;i<k;i++)
{

for(j=O;j<=i;j++)
printf("%~ld",comb(i,j)");

printf("\n") ;

}

long comb(int n,int r)
{

for Pascal's triangle

C in Depth

") ;

long c;
c=factorial(n)/(factorial(r)*factorial(n-r))
return c;

}

long factorial (int k)
{

long fact=l;
while(k>O)
{

fact*=k;
k- -;

return "fact;
}

Problem 4
Write a program to convert a decimal number to a roman number. The roman numbers con:espond"
to decimal numbers are as-

1- ,i, 9 - IX 100 - c
4 - iv 10 - X 500 - d

5 - v 50 - I 1000 - m

Some examples are-

14 xiv 123 cxxiii 1009 mix

48 xxxxviii 772 dcClxxii 2856 mmdccclvi

/*P6.31 Program to convert a decimal number to roman number*/
#include<stdio.h>
int roman(int, int, char);
main ( )
{

int num;
printf ("Enter a number ") ;
scanf{"%d",&num) ;
1f(num>=lOOO)

num=roman(num,1000, 'm');



Functions

if(num>=500)
num=roman(num, 500, 'd');

if(num>=lOO)
num=roman(num,lOO, 'c');

if(num>=50)
num=roman(num, 50, '1');

if (num>=lO)·
num=roman(num, 10, 'x');

if(num>=5)
num=roman(num,5, 'v');

if(num>=l)
roman (num, 1, 'i');

printf (" \n") ;
}

int roman(int n,int k,charc)

if(n==9)
{

printf("ix") ;
return 0;

}

if(n==4)
{

printf("iv") ;
return 0;

}

while(n>=k)
{

printf("%c" .c);
n=n-k;

return n;
}

Problem 5

Write a program that prints the reverse of a positive integer using recursion.

f*P6.32 Program to print the reverse of a positive integer* f
#include<stdio.h>
void reverse (long int n);
main ( )
{

long int num;
printf ("Enter number ") ;
scanf("%ld",&num) ;
reverse (num) ;
printf("\n") ;

}

void reverse (long int n)
{

int rem;

143



144

if(n==O)
return;

else

rem=n%lO;
printfl"%d",rem);
n/=lO;
reverse (n) ;

}

Problem 6

C in Depth

Write a program that reads a number and prints whether the given number is divisible by 11 or nol
by using the algorithm which states that a number is divisible by 11 if and only if the difference oj
the sums of digits at odd positions and even positions is either zero or divisible by 11,

/ * P6. 33 Program that tests whether a number is divisible by lIar not
*/

#include<stdio.h>
void· test (long int x);
main ( )
{

long int num;'
printf("Enter the numher to be tested ");
scanf("%ld",&num);
test (num) ;

}

void test (long int n)
{

int sl:::0, s2=0, k;
while(n>O)
{

sl+=n%10;
n/=10;
s2+=n%10;
n/=10;

}

k=sl>s2? (sl-s2) : (52-s1) ;
if(k>10)

te5t(k};
else if(k==O)

printf ("The number is divisible by 11 \n") ;
else

printf("The number is not divisibl~ by 11\n");
} .~

Problem 7

Write a program that uses a recursive function to convert a decimal number to (i) Binary (ii) 0
(iii) Hexadecimal depending on user's choice.



/* P6.34 Program to convert a decimal number to Binary, Octal or Hexadecimal
*/

#include<stdio.h>
void convert(int, int);
main ( )
{

int num, base;
int . choice;
while(l)
{

printf("l.Binary\n") ;
printf("2.0ctal\n") ;
printf("3.Hexadecimal\n") ;
printf("4.Exii\n") ;
printf ("Enter your choice ") ;
scanf ("%d", &choice)";
switch(choice)
{

145

loop* / "whileof
choice\n") ;
/ *Takes to start

case 1:
base=2;
break;

case 2:
base=8;
break;

case 3:
base=16;
break;

case 4:'
exi t (1) ;

default:
printf ("Wrong
continue;

Functions

}

printf ("Enter the number in decimal: ");
scanf("%d",&num) ;
convert(num,base) ;
printf (" \n") ;

}

void convert (int num, int base)

int rem;
rem=num%base;
num/=base;
if (num>O)

convert (num,base) ;
if(rem<lO)

printf("%d",rem) ;
else

printf("%c",rem-lO+'A') ;



Write a program to find out the prime factors of a number using both iterative and recursive methods.
Prime factors of 56 are 2; 2, 2, 7, prime factors of 98 are 2, 7, 7, prime factors of 121 are 11, 11.

146

Problem 8

/ *P6. 35 Program to print the prime factors * /
#include<stdio.h>
void pfact (int num);
void rpfact( int n);
main ( )
{

int num;
printf ("Enter a number ") ;
scanf("%d",&num);
pfact(num) ;printf("\n");
rpfact(num) ;printf("\n");

}

void pfact (int num)
{

int i;
for(i=2;num!=1;i++) I

{

while(num%i==O)
{

printf ("%d ", i) ;
num=num/i;

}

void rpfact (int num)

static int i=2;
if (num==l)

return;
else

while(num%i==O)
{

printf("%d ",i);
num=num/ i;

i++;
rpfact (num) ;

}

Problem 9
i I

C in Depth

Write a program to find out the sum of this series, both by iterative and recursive methods.



%If\n'',series(x,n) ):
%If\n'',rseries(x,n)) :

Functions 147

/*P6.36 Program to find out the sum of series*/
#include<stdio.h>
long intfact (int num):
double power (float x, int· n):
doub.le series (float x, int n):
double rseries (float x, int n):
main ( )
{

\\) iterms

\\) ;

float x:
int n:
printf ("Enter x
scanf("%f",&x) :
printf ("Enter number of
scanf ("%d", &n) :
printf("Itera~ive

printf("Recursive
}

long int fact (int num)
(

int i:
long int f=l:
for(i=l:i<=num:i++)

f=f*i:
return f:

}

double power (float x, int n)
(

int i:
float p=l:
for(i~l:i<=n:i++)

p=p*x:
return p:

}

double series (float. x, int n)
(

int i,j,sign=l:
float term, sum:
for(i=l:i<=n:i++)

".

sign=(i%2=~O)?-1:1:

j=2*i-l:
term=sign*power(x,j)/fact(j);
sum+=term:

return sum;
}

do,uble rseries{ float x, int n)

int sign=l:
float term, sum'
;i.f(n==O)

+



148

sum=O:
else

{

sign=(n%2==O)?-1:L:
term=sign*power(x,2*n-l)/fact(2*n-l) :
sum=term+rseries(x,n-l):

return. sum:

C in Depth

The ith term of the series is x( 2" i-I)/ (2*i~1)! . In iterative function, we'll take a loop from i=l to
i=n and add all the terms. To calculate the numerator ahd denominator of a term we'll use the functions
power( ) and fact( ). Since the terms.have alternate positive and negative signs, so we'll take a variable
sign, initialize it with 1 and multiply it with -Ion each iteration of the loop.

Problem 10

Write a program to find out the Least Common Multiple and Highest Common factor of two numbers
recursively. The iterative method is given in Program P5.42.

/*P6.37 Program to find out the LCM and RCF of two numbers· recursively*/
#include<stdio.h>
int m, n:
main( )
{

int x,y:
printf ("Enter two numbers ") :
sc·anf ("%d %d·" , &x, &y) :
printf ("RCF of %d and %d is %d\n", x, y, hcf (x, y) ) :
m=x;n=y:
printf ("LCM of %d and %d is %d\n", x, y, lcm (x, y) ) :

}

int hcf(int· a, int b)

if(a==b)
retur·n (b) :

else if (a<b)
hcf(a,b-a)

·else
hcf(a-b,b) :

}

int lcm(int a, int ,b)

if (a==b)
return (b) :

else if(a<b)
lcm(a+m,b):

else
lcm(a,b+n.):



Functions

Assume stdio.h is included in all programs.
(l) void func (void) ;

·main( )
{

printf("Lucknow\n H);
goto ab;

)

void func (voidl
{

ab:
pr~ntf("Bar~illy\nH);

(2) main (
{

int i=9;
if(i==9)

{

int i=25;
}

printf("i=%dH,i);

3) void func(int a,int b);
main( )
{

int. Xi

x=func(2,3) ;
}

void func(int a,ipt b)
{

int s;
s=a+b;
retu.rn;

4) main(
{

int x=5;
x=func ( ) ;
printf("%d\n",x);

)

int func (int a)

a=a*2;

-) main (
{

Exercise

149

~I



150

static int x=5;
if(x>O)
{

printf ("%d
x- -;
main ( ) ;

(6) main (
{

II I x) i

C in Depth

int s;
s=func(2,3);
printf("%d\n",s);

}

int func(int a,il1t b,int c)

c=4;
return (a+b+c);

(7) main(

int s;
s=func(2,3,6);
printf("%d\n",s);

int func (int a, int b)

return (a+b);

(8) func(int x,int y);

main ( )
{

int p=func(5,6};
printf ("%d", p) ;

}

func(int x,int y)

int. x=2;
return x*y;

(9) main(
{

int varl=12, var2=35;
printf("%d",max(varl,var2»;

int max (int x, int y)



Functions 151

x>y?return x: return y;

(10) main (
{

int n=5;
printf("%d\n",func(n» ;

}

func (int n)
{ return(n+sqr(n-2)+cube(n-3»;

sqr (int· x)
{ return (x*x) ;

cube(int x)
{ return (x*x*x);

(11) main ( )
{

int func(int a,int b);

return (a+b);

}

int c;
c=func(3,5) ;
printf ("%d", c) ;

(12)main(
{

int x=5;
fun'c1 (x) ;

}

func1(int a)
{

printf("Value of a
if(a>O)

func2(--a);

}

func2(int b)

{
printf ("Value of b
if (b>O)
func1 (- -b);

(13)void disp(int, int);
main( )
{

int x=15;
float y=290.5;
disp (x, y) ;

%d\n" ,a) ;

%d\n",b);



void disp (int 'a, int b)
{

printf ("%d %d\n", a, b) ;
}

(14)void func(void ).;
main ( )
{

int i=S;
for(i=i+1;i<8;i++)

func ( ) ;
}

void func (void)

int j;
for{j=1;j<3;j++)

printf(~%d\t",++j);

(lS)main(
{

int i=10, k;
for

k=mult(i)
U (- -i<S)

break;
r
printf{"k=%d\n",k);

}

mult(int j)
{

j *=j.;
return(j) ;

(16) main (
{

int i=2,j=3;
printf("%d\n",func(i,j) );

}

func(int a,int b)

a=a-S;
b++;
return ( ! a+- -b) ;

(17)main(
{

int X;

C in Depth



Functions

x=func(2,3,4) ;
printf("%d\nH,x) ;

}

func(int a,int b,int c)

{
return(a,b,c) ;

(18)void func (int a, int b);
rna'in ( )
{

int i=5,j=lO;
func(i/2,j%3) ;

}

void func(int a,intb)

a=a/2;
b- -;
printf("%d\tH,a+b) ;

(19)int a=5;
void func (void );
main ( )
{

func ( ) ;
printf ("%d\n H, a) ;

}

void func (void)
{

int a=2;
printf ("%d\t H, a);

}

(20,)rnq.in(
{

int a=2,b=5;
a=func(a+b,a-b) ;
printf("%d\nH,a) ;

}

func (int x, int y)
{ return X+Y, x-y;

( 2 1 ) rna i n ( )
{

int i=O, k=3;
i+=func (k) ;
i+=func (k) ;
i+=func (k) ;
printf("%d\nH,i);

153



."

154 C in Depth

fune (int k)
(

static int m=2;
m=m+k;
return m;

(22)main(
{

int n=8;
printf("%d\nU,fune(n)) ;

}

fune (int n)
{

if(n==O)
return 0;

else
return(n+fune(n-l));

(23)main(
{

int a=2,b=6; _
printf("%d\tU,funel(a,b));
printf("%d\n U,fune2(a;b));

}

funel (inta, int b)
{

int i,s=O;
for(i=a;i<=b;i++)

s=s+i*i;
}

return s;
}

fune2 (int a, int b)
{

int s;
if (a<b)

s=a*a+func2(a+l,b) ;
else

s=a*a;

:24)main(
{

int a=7, b=8;.
printf("%d\nU,fune(a,b)) ;

}

fune(int x,int y)

{



Functions

if (x==O)
return y;

else
func (- -x, ++Y)

(25)main(
{

int x=55, y=l 7;
printf("%d\n",func(x,y»;

}

func (int x, int y)
{

int q=O;
if (x<y)

return 0;
else

return func(x-y,y)+l;

(26)main(
{

funcl (6);
printf("\n") ;
func2 (6);

}

funcl (int x)
{

printf("%d ",x);

if (x>2)
funcl(- -x);

}

func2 (int x)
{

if (x>2)
func2 (- -x) ;

printf("%d. ",x);

155

Programming .Exercise
1. Write a function cubesum( ) that accepts an integer and returns the sum of the ~ubes .of individual

digits of that number. Use this program to print Armstrong numbers in a given rarge. (See program
P5.24)

2. Write a function that inputs a number and returns the product of digits of that number until the
product is reduced to one digit ( like P5.25). The number of times digits need to be multiplied
to reach one digit is called the persistence of the number. Write another function pers( )to input
a number and return its persistence.
For example: 86 ~ 48 ~ 32 ~6 (persistence 3)

341 ~ 12 ~ 2 ( persistence 2)



156 C in Depth

3. Write a functi9n sumdiv( ) that finds the sum of divisors of a number. (Divisors of a number are
those numbers by which the number is divisible). For example divisors of 36 are 1, 2, 3, 4, 6,
9, 18. A number is called perfect if the sum of divisors of that number is equal to the number.
For example 28 is a perfect number, since 1+2+4+7+14 =28. Write a program to print all the perfect
numbers in· a given range.

4. Write a program to find the sum of this series upto n terms.
1 + 1 / 2 + 1 / 4 + 1 / 9 + 1 / 16 + .

5. Write a program to find out the roots of quadratic equation ax2 + bx + c = O.
6. Write a function that accepts a character in lower case and returns its upper case equivalent.

7. Write a program mult() that accepts two integers and returns their product. Don't use the * operator.
Similarly make two more functions quo( ) and rem( ) that accept two integers and return the quotient
and remainder respectively, without the use of / and % operators.

8. Write a recursive function to find the sum of digits of a number.

.,

sumd(n) = {O
(n%10) + sun1d(n/l0)

n=O

n>O

9. Write a recursive function to find the combinations of n objects taken l' at a time

l' = 0 or n = l'

rcomb(n, 1')=
rcomb(n-l, 1') + rcomb(n-l, 1'-1) ) otherwise

10. Write a program to print number in words using recursion. For example if we have a number
31246, then the program should print "

Three one Two four Six

Answers
(1)

(2)

(3)

(4)

We can't use goto between functions, so this program will show an error stating that ab is an
undefined label.

i=9
The function is declared as void so it doesn't return any value, and so the functi0!1 call can't be
used.in any expression.
If no value is returned through return 'statement; ana the function IS not declared of type void
then garbage, value is returned, so the variable x will have garbage value.
54321

Here the definition of maine ) is written recursively.
(6) 9·

Since function declaration is absent, so garbage value is passed in variable c, inside the function
variable c is assigned the value 4. If the function is declared. as-

int func( int, int , int);

then we'll get an error stating that there are too few parameters in call to func( ).



Functions 157

(7) 5

If the function is declared as

int func(int, int);

then we'll get an error stating that there is an extra parameter in call to func( ).

(8) Error: Multiple declaration for x in func( ).

(9) Error: Expression syntax

The operands of conditional operator should be expressions, but return x and return yare not
expressions.

(10) 22

We can have a function call in return statement of another call.

(11) We'll get errors because a function definition can't be written inside definition of another function.

(12) Value of a = 5

Value of b = 4

Value of a = 3

Value of b = 2

Value of a = 1

Value of b = 0

This is an example of indirect recursion.

(13) 15 290

(14) 2 2

(15) k = 25

(16) 3

(17) 4

Here expression a, b, c is considered as an expression with comma operator, so the value of
expression is rightmost value, hence value of c gets returned. '"

(18) 1

(19) 2 5

In func( ), the local variable will be accessed, because whenever there is a conflict between the
local and global variables, the local variable gets the priority.

(20) 10

(21) 24

(22) 36

func( ) finds the sum of series 1+2+3 .... +n

(23) 90 90

Both functions funcI ( ) and func2( ) return the sum of squares of numbers from a to b, funcI (
) uses iterative method while func2( ) uses recursive method.

(24) 15

func( ) is a recursive function for adding two integers.
(25) 3

. func() is a recursive function to find out the quotient.
(26) 6 5 4 3 2

223 4 5



Chapter 7

Arrays

The variables that we have used till now are capable of storing only one value at a time. Consi~er a
situation when we want to store and display the age of 100 employees. For this we have to do the
following-

1.· Declare 100 different variables to store the age of employees.

2. Assign a value to each variable.

3. Display the value of each variable.

Although we can perform our task by the above three steps but just imagine how difficult it would
be to handle so many variables in the program and the 'program would become very lengthy. The concept
oflarrays is useful in these· types of situations where we can group· similar type of data items.

An array is a collection of similar type of data items and each data item is called an element of the
array. The data type of the elements may be any valid data type like char, int or float. The elements
of array share the same variable name but each element has a different index number known as subscript.

For the above problem we can take an array variable age[ 100] of type into The size of this array variable
is 100 so it is capable of storing 100 integer values. The individual elements of this array are- .

"age[O], age[l], age[2], age[3], age[4], age[98], age[99]

In C. the subscripts start from zero, so age[O] is the first element, age[ 1] is the second element of arra)
and so on.

Arrays can be single dimensional or multidimensional. The number of subscripts detennines the dimensiOl
of array. A one-dimensional array has one subscript, two dimensional array has two subscripts and
on. The one-dimensional arrays are known as vectors and two-dimensional arrays are known as matrice:
fn this chapter first we will study about single dimensional arrays and then move on to multi dimensiom

. "'.arrays.

7.1

. 7.1.1

Qne Dimensional Array

Declaration of I-D Array

Like other simple variables, arrays should also be declared before they are used in the program.

The syntax for declaration of an array is-

data_type array~name[size];

Here array_name denotes the name of the array and it can be any valid C identifier, data_type is
data type of the elements of array. The size of the array specifies the number of elements that
be stored in the array. ·lmay be a positive integer constant or constant integer expression.



Arrays 159

Here are some examples of array declarations-·
int age[100]; .
float sal[15];
char grade[20];

Here age is an integer type array, which can store 100 elements of iriteger type. The array sal is a floating
type array of size 15, can hold float values and third one is a character type array of size 20, can hold
characters. The individual elements of the above arrays are-

age[O], ageI1], age[2], age[99]
sal[O], sal[I], sal[2]! sal[14]
.grade[O], grade[I], grade[2], grade[19]

When the array is declared, the compiler allocates space in .memory sufficient to hold all the elements
of the array, so the compiler should know the size of array at the compile time. Hence we can't use'
variables for specifying the size of array in the declaration. The symbolic constants can be' used to
specify the size of array. For example-

, -

#defineSIZE 10
rnain( )
{

int size=15;
float sal [SIZE] ;
in t rna r k s [ s i z e] ;

/*Valid*/
/ *Not valid*/

} .

The use of symbolic constant to specify the size of array makes it convenient to modify the program
if the size of array is to be changed later, because the size has to be changed only at one place i.e.
in the #define directive.

7.1.2 Accessing I-D Array Elements
The elements of an array can be accessed by specifying the array name followed by subscript in brackets.
In C, the array subscripts start from O. Hence if there is an array of size 5 then the valid subscripts
will be from 0 to 4. The last valid subscript is one less than the size of the array. This last valid subscript
is sometimes know as the upper bound of the array and 0 is known as the lower bound of the array.

Let us take an array-

int arr[5]; /*Size of array arr is 5, can hold five integer elements*/

The elements of this array are-

arr[O], arr[l], arr[2], arr[3], arr[4]

3ere 0 is the lower bound and 4 is the upper bound of the array.

e subscript can be any expression that yields an integer value. It can be any integer constant, integer
-ariable, integer expression or return value(int) from a function call. For example, if i and j are integer

riables then these are some valid subscripted array elements
arr[3]
arr[i]
arr[i+j]



arr[2*j]

arr[i++]

A subscripted array element is treated as any other variable in the program. We can store values in
them, print their values or perform any operation that is valid for any simple variable of the same data
type. For example if arr[5] and sal[10] are two arrays then these are valid statements-

C in Depth

into sal[2]*/
of sal[2]*/
and increment the value ofi*

arra

1*/

/*Input value
/*Print value

value of sal[2]

int arr[5];
fioat sal (10).:
inti;
sc'anf("%d",.&arr[l]); /*input value into arr[l]*/
printf("%f",sal[3]); /*print value .of sal[3]*/
arr[\4]=25; /*assign a value to arr[4] */
arr[4]++; /*Increnient the value of arr[4] by
sal[5]+=200; /*Add 200 to sal[5]*/
sum=arr[0]+arr[l]+arr[2]+arr[3]+arr[4] ;/*Add all the values of
arr[5]*/
i=2;
scanf("%f",&sal[i]) ;
printf("%f",sal[i]) ;
printf ("%f", sal [i++]); /*Print

160

Processing 1-D Arrays7.1.3

For processing arrays we generally use a for loop and the loop variable is used at the place of subscri
The initial value of loop variable is taken 0 since array subscripts start from zero. The loop variab
is increased by 1 each time so that we can accesS and process the next element in the array. The to
number of passes in the loop will be equal to the number of elements in the array and in each p
we will process one element.

Suppose arr[10] is an array of int type-

(i) Reading values in arr[10]

fore i = 0; i < 10; i++)
scanf("%d", &arr[i]);

(ii) Displaying values of arr[ 10]
fore i = 0; i < 10; i++)

printf(%d ", arr[i]);
(iii) Adding all the elements of arr[ 10]

sum = 0;

fore i = 0; i < 10; i++)

sum+=arr[ i];

In C there is no check on bounds of the "array. For example if we have an array arr[5] , the vali~

subscripts are only 0, 1, 2, 3, 4 and if someone tries to access elements beyond these subscrip
like arr[5] , arr[10] or arr[-I], the compiler will not show any error message but this may lead to rm
time errors, which can be very difficult to debug. So it is the responsibility of programmer to provi
array bounds checking wherever needed.



Arrays

/ * P7 . 1 Program to input values into an array and display th,em* /
#include<stdio.h>
main( )
{

int arr[5J,i;
ior(i=0;i<5;i++)

161

printf ("Enter the value for arr[ %d]
scanf("%d".&arr[i)) ;

" , i) ;

}

printf ("The array elements are
for(i=0;i<5;i++)

printf("%d\t",arr[i]);
printf ("\n");

}

Output:

Enter the value for arr[O] U
Enter the value for arr[ 1] 45
Enter the value for arr[2] 59
Enter the value for arr[3] 98
Enter the value for arr[4] 21

_ The array elements are :

12 45 59 98 21

\n" ) ;

/ *P7 .2 Program to add the elements of an array* /
#include<stdio.h>
main ( )
{

int arr[10],i,sum=0;
for(i=0;i<10;i++)
{

printf ("Enter the value for arr [%d]
scanf("%d~,&arr[i]);

sum+=arr[i];

printf ("Sum = %d\n". sum) ;

/*P7.3 Program to count the even and odd numbers in a array*/
#include<stdio.h>
#define SIZE 10
main( )
{

int arr [SIZE] • i. even=O_, odd=O;
for(i=O;i<SIZE;i++)
{

printf ("Enter the value for arr lId]
scanf("%d".&arr[i]) ;
if(arr[i]%2==0)

fJ Ii) .



162

even++;
else

odd++;

print£: ("Even numbers %d, Odd numbers =%d\n", even, odd );

C ill Depth

7.1.4 Initialization of I-D Array

After declaration, the elements of a local array have garbage value while the elements of global and
static arrays are automatically initialized to zero. We can explicitly initialize arrays at the time of declaration.
The syntax for initialization of an array is-

data_type array_name[size]={valuel, value2 valueN };

Here array_name is the name of the array variable, size is the size of the array and value I, value2,
............valueN are the constant values known as initializers, which are assigned to the array elements
one after another. These values are' separated by commas and there is a semicolon after the ending
braces. For example-

int marks[5] = {50, 85, 70, 65, 95};

The values of the array elements" after this initialization are-

marks[O] : 50, marks[I]: 85, marks[2]: 70, marks[3]: 65, marks[4]: 95

While initializing I-D an'ays, iUs optional to specify the size of the array. If the size is omitted during
initialization then the compiler assumes the size of array equal to the number of initializers. For example

. int marks[] = { 99, 78, 50,45, 67, 89};
float sal[] = { 25.5, 38.5, 24.7};

Here the size of array marks is assumed to be 6 and that of sal is assu-med to be 3.

Ifduring initialization the number of initializers is less than the size of array then, all the remaining elements
of array are assigned value zero. For example- '"

int marks[5] = { 99, 78};
\

Here the size of array is 5 while there are only 2 initializers. After this initialization the value of the
elements are as- \ .

marks[O] : 99, marks[l]: 78, marks[2]: 0, marks[3]: 0, marks[4]: 0

So if we initialize an array like this-

int arr[IOO] = {O};

then all the elements of arr will be initialized to zero.

If the number of initializers is more than the size given in brackets then compiler will show an erro
For examp!e-

int arr[5] = '{I, 2, 3,4,5,6,7, 8}; /*Error*i

We can't copy all the elements of an array to another array by simply assigning it to the other area:.
For example if we have two arrays a[5] and b[5] then

int a[5] = {I, 2, 3, 4, 5};
int b[5];
b = a; /*Not valid*/



Arrays 163

We'll have to copy all the elements of array one by one, using a for loop.

for( i = 0; i < 5; i++)

b[i] = a[i];

hi the following program we'll find out the maximum and minimum number in an integer array.

/ *P7 .4 Program to find the maximum and minimum number in an array* /
#include<stdio.h>
main ( )
{

int i, j , arr[ 10] = { 2 , 5, 4, 1, 8, 9, 11 , 6, 3 , 7} ;
int min, max;
min=max=arr[O] ;
for(i=l;i<lO;i++)
{

'%d\n" ,min, max) ;

\
\

Maxi~um

\

if(arr[i]<min)
min=arr[i] ;

if(arr[i]>max)
max=arr[i] ;

}

~rintf("Minimum %d,
}

Output:

Minimum = 1, Maximum = 11

We have taken the value of first element as the initial value of min and max. Inside the for loop, we'll
start comparing from second element onwards so this time we have started the loop from 1 instead
of O.

The following program will reverse the elements of an array.

/ *P7 . 5 Program to reverse "the elements of an array* /
#include<stdio.h>
main ( )
{

int i,j,temp,arr[lO)={1,2,3,4,5,6,7,8,9,lO}:
.for(i=O,j=9;i<j;i++,j- -)

{

temp=arr[i);
arr [i) =arr [j ) ;.
arr[j]=temp;

}

printf ("After reversing the array is ) :
for(i=O;i<10;i++)

printf("%d ",arr[i]);
printf("\n") ;

}

Output:

After reversing the array is 10 9 8 7 6 5 4 3 2 1

In the for loop we have used comma operator and taken two variable i and j. The variable i is initialized

l ......._



./.

164 C in Depth

with the lower bound and j is initialized with upper bound. After each pass of the loop, i is incremented
while j is decremented. Inside the loop, a[i] is exchanged with a(j]' So a[O] will be exchanged with
a[9], a[l] with a[8], a[2] with a[7] and so on.' '

The next program prints the binary equivalent of a decimal number. The process of obtaining a binary
number form decimal number 29 is given below:

29/2
14/2
7/2
3/2
1/2

Quotient
14

7
3
1
o

Remainder
1 a[O]
o a[l]
1 a[2]
1 a[3]
1 a[4]

MSB

LSB

't
I

We will store the remainders in an array, and then at last the array is printed in reverse order to get
the binary number.

/ *P7 . 6 Program to convert a decimal number to binary number * /
#include<stdio.h>
main( )
{

\

printf ("Binary number is ") ;
for(j=i-1;j>=0;j- -)/*print the array backwards*/

printf("%d",arr[j));
printf("\n") ;

}

Output:

Enter a decimal number : 29
Binary number is : 11101

The next program searches for a particular item in the array.
~

'/*P7.7 Program to search for an item in the array*/
# inc1ude<stdio. h>
#define SIZE 10
main ( )
{

\

" ) ;

/ * s tore the remainder in array* /arr [i) =num%2; ,
num/=2;
i++;

, . in t num, rem, arr [ 15) , i, j ;
printf ("Enter a decimal number
scanf("%d",&num) ;
i=O;
while(num>O)
{

int i,arr[SIZE)={23,12,56,98,76,14,65,11,19,45};
int item;
printf ("Enter the i tern to be searched ") ;



Arrays

scanfl"%d",&item)~

for(i=O;i<SIZE;i++)
{

if(item==arr[i))
{

printf ("%d found at position %d\n", item, i+1);
break;

165

}

if (i==SIZE)
printf("Item %d not found in array\n" , item) ;

}

The item to be searched is compared with each element of the array, if the element is found, for loop
is terminated through break statement. The control can come out of the loop in two cases, first if the
item is found and loop is terminated through break and second if item is not found and the loop is
fully executed. In the second case the value of i would be equal to SIZE. Here we are searching the
item sequentially so this search is known as linear or sequential search. I.

7.1.5 I-D Arrays And Functions

7.1.5.1 Passing Individual Array Elements to a Function

We know that an array element is treated as any other simple variable in the program. So we can pass
individual array elements as arguments to a function like other simple variables.

/*P7.8 Program to pass array elements to a function* /
#include<stdio.h>
mainl)
{

int arr[lOJ,i;
printf I "Enter the array elements ") ;
for(i=O;i<10;i++)
{

'scanfl"%d",&ar~[i) );
checklarr[i)) ;

}

check (int num)
{

if (num%2==O)
printf("%d

else
printf("%d

is even\n",num);

is odd\n", num) ;

7.1.5.2 Passing whole I-D Array to a Function

We can pass whole array as an actual argument to a function. The corresponding formal argument should
be declared as an array variable of the same data type.
mainl )



166 C in Depth

int arr[10]

func(arr);/*In function call,array name is specified without brackets*/
}

func(int va1[10])
{

It is optional to specify the size of the array in the formal argument, for example we may write the
function definition as-
func (int val [ ])
{

/*P7.9 Program to understand the effect of passing ~n array to a function*/
#include<stdiO.h>
main ( )
{

We have studied that changes made in formal arguments do not affect the actual arguments, but this
is not the case while passing an array to a function. The mechanism of passing an array, to a function
is quite different from that of passing .a simple variable. We have studied earlier that in the case of simple
variables, the called function creates a copy of the variable and works on it, so any changes, made in
the function do not affect the original variable. When an array is passed as an actual argument, the
called fu~ction actually gets access to the original array and works on it, so any changes made inside
the function affect the original array. Here is a program in which an array is pass~d to a function.

. int i, arr [6] = {1, 2, 3,4, 5, 6} ;
func (arr).;
printf ("Contents of array are now
for(i=O;i<6;i++)

printf("%d ",arr[i»;
printf("\n") ;

}
func(int vale])
{

int sum=O,i;
for(i=O;i<6;i++)
{

val[i]=val[i]*val[i] ;
sum+=val[i];

\\ ) ;

}

printf("The sum of squares = %d\n",sum);
}

Output:

The sum of squares = 91
The contents of array are now : 1 4 9 16 25 36



Arrays 167

Here we can see that the changes made to the array inside the called function are reflected in the calling
function. The name of the formal argument is different but it refers to the original array.

Since it is not necessary to specify the size of array in the function definition, so we can write general
functions that can work on arrays of same type but different sizes. For example in the next program,
the function add( ) is capable of adding the elements of any size of an integer array.

/ *P7 . 10 Program that uses a general function that works on arrays of
different sizes* /
#include<stdio.h>
main ( )
{

int a[5]={2,4,6,8,10};
int b [8] = {1, 3,5,7,9,11,13,15} ;
int c [10] = {l, 2,3,4,5,6,7,8,9,10} ;
printf ("Sum of elements of array a
printf ("Sum of elements of array b
printf ("Sum of elements of array c

}

add(i.nt arr[],int n)
{

int i, sum=O;
for(i=O;i<n;i++)

sum+=arr[i];
return sum;

}

Output:
Sum of elements of array a : 30
Sum of elements of array b : 64
Sum of elements of array c : 55

%d\n",add(a,5»;
%d\n",add(b,8» ;
%d\n",~dd(c,10» ;

7.2 Two Dimensional Array

7.2.1 Declaration and Accessing Individual Elements of a 2-D array

The syntax of declaration of a 2-D array is similar to that of I-D arrays, but here we have two subscripts)

data_type array_name[rowsize][columnsize]; ,

Here· rowsize specifies the number of rows and }lolumnsize represents the number of columns in the
array. The' total number of elements in the array are, rowsize * columnsize.For example-

int arr[4][5];

Here arr is a 2-D array with 4 rows and 5 columns. The individual elements of this array can be accessed
by applying two subscripts, where the first subscript denotes the row number and the second subscript
denotes the column number. The starting element of this array is arr[O][O] and the last element is arr[3][4].
The total number of elements in this array is 4*5 = 20. '



168 C in Depth

ColO Call Col2 Col3 Col4
Row 0 arr[O] [0] arr[O][I] arr[O] [2] arr[O] [3] arr[OH4]
Row I arr[I][O] . arr[l][l] arr[I][2] . arr[I][3] arr[l][4]
Row 2 arr[2] [0] arr[2][I] arr[2] [2] arr[2][3] arr[2] [4]
Row 3 arr[3][0] arr[3][I] arr[3] [2] arr[3] [3] arr[3] [4]

7.2.2 Processing 2-D Arrays

for(j=O;j<5;j++)
printf("%d ",arr[i][jj);

printf("\n") ;

for(i=O;i<4;i++)

For processing 2-D arrays, we use two nested for loops. The outer for loop corresponds to the row
and the inner for· loop. corresponds to the column.

int arr[4][5];

(i) Reading values in arr
for( i = 0; i < 4; i++ )

for( j = 0; j< 5; j++ ).

'" scanf("%d " &arr[i][j D;
(ii) Displaying values of arr

for( i = 0; i < 4; i++ )
for( j = 0; j< 5; j++ )

printf( "%d ", arr[i] UD;
_This will print all the elements in the same line. If we want to print the elements of different rows
on different lines then we can write like this-

.Here the printf("\n") statement causes the next row to begin from a new line.

/ *P7. 11 Program to input and display a matrix* /
#define ROW 3
#def ine COL 4
tinclude<stdio.h>
main ( )
{

int mat [ROW] [COL], i, j;
printf ("Enter the elements of matrix (%dx%d) rOW-Wlse ; \n" ,ROW, COL) ;
for(i=O;i<ROW;i++)

for(j=O;j<COL;j++)
scanf ("%d", &mat[i] [j]);

printf ("The matrix that you have entered is ; \n") ;
for(i=O;i<ROW;i++)
(

for(j=O;j<COL;j++)



Arrays 169

printf("%5d",rnat[i] [j]);

printf("\n") ;
}

printf("\n") ;

Output:

Enter the elements of matrix(3x4) row-wise 

2 3 4 7

8 5 I 9
1 825

The matrix that you have entered is 

2 3 4 7

8 5 1 9
I 825

7.2.3 Initialization of 2-D Arrays

2-D arrays can be initialized in a way similar to that of I-D arrays. For example

int mat[4][3] = { 11, 12, 13, 14, 15, 16, p, 18, 19, 20, 21, 22};

These values are assigned to the elements row-wise, so the values of elements after this initialization
are-

mat[O][O] 11
mat[I][O] 14
mat[2][0] 17
mat[3][0] : 20

mat[O][I] : 12

mat[I][IJ.: 15
mat[2][1] : 18
mat[3][1] : 21

mat[0][2] 13
mat[I][2] 16
mat[2][2] 19
mat[3][2] : 22

o * /
1 * /
2 * /
3 * /

/* Row
/* Row
/* Row
/* Row

.While initializing we can group the elements row-wise using inner braces. For example
in t rna t [ 4] [3] ={{11 , 12 , 13 } , {14, 15 , 16 } , {I 7 , 18 , 19 } , {2 0 , 21 , 22 } } ;
int rna t [ 4] [3] = {

{11,12,13},
{l4,15,16},
{l7,18,19},
{20,21,22}

} ;

Here the values in the first inner braces will be the values of Row 0, values in the second inner braces
will be values of Row 1 and so on.

Now consider this array initialization-
in t rna t [ 4] [3] ={

{11 },
{12,13},
{l4,15,16},
{17}

/ *Row 0* /
/ *Row 1 * /
/ *Row 2 * /
/*Row 3* /

} ;



170 C in Depth

The remaining elements in each row will be assigned values 0, so the values of elements will be-

{l,10},
{2,20,200J,
{3 },

{4, 40, 400}

. In 2-D arrays it is optional to specify the first dimension but the second dimension should always be
present. For example-
int rna t [) (3) = {

: \n", ROW ,.COL) ;

mat[O][2] 0
mat[1 ][2]: 0
mat[2][2]: 16
mat[3][2]: 0

mat[O][I] 0
mat[l][l] : .13
mat[2][ 1] 15
mat[3][1] 0

printf ("Enter matrix mat2 (%dx%d) row-wise
for(i=O;i<ROW;i++)

for(j=O;j<COL;j++)
scanf ("%d", &mat2 [i) [j]);

mat[O][O]: 11
mat[ 1][0] 12
mat[2][0] 14
mat[3][0] 17

} ;

Here first dimension is taken 4 since there are 4 rows in initialization list.

A 2-D array is also known as a matrix. The next program adds two matrices;- the order of both the
matrices should be same. .

i~t i, j, matl [ROW) [COL) ,mat2 [ROW) [COL) ,mat3 [ROW] [COL) ;
printf ("Enter matrix matl (%dx%d) row-wise .: \n" ,ROW, COL) ;
for(i=O;i<ROW;i++)

for(j=O;j<COL;j++)
scanf ("%d", &matl [i) [j) ;

/*P7.12 Program for addition of two matrices.*/
#define ROW 3
#define COL 4
#include<stdio.h>
main ( )

/*Addition*/
for(i=O;i<ROW;i++)

for(j=O;j<COL;j++)
rna t 3 [i) [j ) =ma t 1 [ i) [j ) +ma t 2 [i) [j ) ;

printf ("The resultant matrix mat3 is : \n");
for(i=O;i<ROW;i++)
{

for(j=~;j<COL;j++)

printf ("%5d" ,mat3 [i) [j);
printf("\n")';



Arrays

Output:

Enter elements of first matrix mat1(3x4) row-wise 

1 284

5 6 7 8

3 2 1 4

Enter elements of second matrix mat2(3x4) row-wise 

2 5 4 2

1 526

9 4 7 2

The resultant matrix mat3 is -

3 7 12 6

6 11 9 14

12 6 8 6

171

Now we'll write a program to multiply two matrices. Multiplication of matrices requires that the number
of columns in first matrix should be equal to the number of rows in second matrix. Each row of first
matrix is multiplied with the column of second matrix then added to get the element of resultant matrix.
If we multiply two matrices of order mxn and nxp then the multiplied matrix will be of order mxp.
For example- .

[ 4 :] [2
6

~A2• 2 = B - .
3 2>3 -3 2

. _ [ 4*2 + 5*(-3) 4*6 + 5*2 4*3 + 5*'J [~7 34 32JC2• 3 -

3*2 + 2*(-3) 3*6 + 2*2 3*3 + 2*4 22 17

/*P7.l3 Program for multiplication of two matrices*/
#include<stdio.h>
#def ine ROWl 3
#define COLl 4
#define ROW2 COLl
#define COL2 2
main( )

int matl[ROWlj [COL1J,mat2[ROW2j [COL2j,mat3[ROWlj [COL2j;
int i,j,k;

printf ("Enter matrix matl(%dx%d) row-wise : \n", ROW1, COL1) ;.
for(i=Oji<ROWlji++)

fbr(j=O;j<COL1;j++)
scan f ( " %d" , &matl [ i j [j j ) ;

printf ("Enter matrix mat2 (%dx%d) row-wise : \n" ,ROW2, COL2} ;



}

Output:

Enter matrix mat1(3x4)row-wise 

2 1 4 3

527 1

3 1 4 2

Enter matrix mat2(4x2)row-wise 
1 2
3 4
2 5

62

The Resultant matrix mat3 is 

31 34
31 55

26 34

The next program finds out the. transpose of a matrix. Transpose matrix is defined as the matrix that
is obtained by interchanging the rows and columns of a matrix. If a matrix is of mxn order then its
transpose matrix will be of order nxm.

/*P7.14 Program to find the tranpose of I!)atrix.*/
#include<stdio.h>
#define ROW· 3
#define COL 4
main ( )
{

172

for{i=O;i<ROW2;i++)
for{j=O;j<COL2;j++)

scan f ( "% d" , &ma t 2 [ i) [j ) ) ;

I *Mul tiplication * I
for{i=O;i<ROW1;i++)

for{j~O~j<COL2;j++)

{

rna t 3 [ i) [j) = 0 ;
for{k=O;k<COL1;k++)

rna t 3 [ i) [j) + =rnatl [ i) [k) *rna t 2 [k) [j ) ;

printf ("The Resultant matrix mat3 is : \n") ;
for.{i=O;i<ROW1;i++)
{

~or{j=O;j<COL2;j++)

printf ("%5d" ,mat3 [i) [j));
printf{"\n");

int matl [ROW) [COL] ,mat2 [COL] [ROW], i, j;
printf ("Enter matrix. matl (%dx%d) row-wise \n" ,ROW, COL) ;

C in Depth



Arrays

for(i=O;i<ROW;i++)
for(j=O;j<COL;j++)

scan f ( "% d" , &ma t 1 [ i] [j ] ) ;

for(i=O;i<COL;i++)
for(j=O;j<ROW;j++)

ma t 2 [ i] [j ] =ma t 1 [j ] [i] ;

printf ("Tranpose of matrix is; \n") ;
for(i=O;i<COL;i++)
{

for(j=O;j<ROW;j++)
printf ("%5d" ,mat2 [i] [j] ) ;

printf ("\n");

}

Output:

Enter matrix mat1(3x4) row-wise

3 2 1 5
6 5 8 2
934 1

173

Tranpose of matrix is
369
253
184
521

7.3 Arrays With More Than Two Dimensions
~

We'll just give a brief overview of three-d arrays. We can think of a three-d array as an array of 2-
D arrays. For example if we have an array-

int arr[2][4][3] ;
We can think of this as an array which consists of two 2-D arrays and each of th9se 2-D array has
4 rows and 3 columns.

[0][0] [0][ 1] [0][2) [0][0] [0][ 1] [0][2]

[0] [1][0] [1][1] [1 ][2] [1] [1 ][0] [1][1] [1 ][2]

[2] [0] [2][ 1] [2][2] [2][0] [2][ 1] [2][2]

[3][0] [3][ 1] [3][2] [3][0] [3][1] [3][2]

The individual elements are-

arr[O][O][O], arr[O][O][ 1], arr[O][O][2], arr[O][ 1][0] arr[O][3 ]2]

arr[I][O][O], arr[I][O][I], arr[I][0][2], arr[l)[I][O] arr[I][3]2]

Total number of elements in the above array are-



The value of elements after this initialization are as-

arr[O][O][O] : I arr[O][O][I] :' 2 arr[0][0][2] : 3
arr[O][l ][0] : 4 arr[O][I][I] : 5 arr[0][1][2] : 0
arr[0][2][0] : 6 arr[0][2][1] : 7 arr[0][2][2] : 8

, arr[0][3 ][0] : 9 arr[0][3][1] : 0 arr[0][3 ][2] : 0

arr[l][O][O] : 10 arr[I][O][ll: 11 arr[I][0][2] : 0
arrD][ 1][0] : 12 arr[I][I][I] : 13 arr[ 1][1][2] : 14
arr[I][2][0] : 15 arr[ 1][2][ 1] : 16 arr[I][2][2] : 0
arr[ 1][3][0] : 17 arr[ 1][3][ 1] : 18 arr[ 1][3][2] : 19

174

=2*4*3

= 24

This array can be initialized as
int arr[2][4] [3]={

},

{

{1,2,3},
{4, S} ,
{6,7,8},
{9 }

{l0,11},
{l2,13,14},
{lS,16}
{17,18,19}

/*Matrix 0, Row 0*/
/*Matrix 0, Row 1*/
/*Matrix 0, Row 2*/
/*Matrix °, Row 3*/

/*Matrix 1, Row 0*/
/*Matrix 1, Row 1*/
/*Matrix 1, Row 2*/
/*Matrix 1, Row 3*/

C in Depth

Remember that the rule of initialization of multidimensional arrays is that the last subscript varies most
frequently and the first subscript varies least rapidly.

7.3.1 Multidimensional Array And Functions

Multidimensional arrays can also be passed to functions like I-D arrays. When passing multidimensional
arrays the first(leftmost) dimension may be omitted but all other dimensions have to be specified in
the function definition. For example it would be invalid to write a function like this-

func(int a[ Lint b[ ][ Lint c[ ][ ][ ]) '/*Inva1id*/
{

In arrays band c we can't omit all the dimensions. The correct form is~

func(int a[ ],int b[ ][4],int c[ '][3JlS])
{

/*valid*/



We'll discuss strings in detail in a separate chapter, here is just a brief introduction to strings. In C,
strings are treated as arrays of type char and are terminated by a null character('\O'). This null character ~ .
has ASCII value zero~-

These are the two forms of initialization of a string variable
char str[IO] = {'I', 'n', 'd', 'i', 'a', '\0' };

char str[IO] = "India"; /*Here the null character is automatically placed at the end*/

Arrays

7.4

7.4.1

Introduction To Strings

Input and output of strings

175

J *P7. 15 Program for input and output of strings using scanf () and printf (
) *J
#include<stdio.h>
main( )
{

char str[10]="Anpara"";
printf("String is %s\n",str);
printf ("Enter new value for string ) ;
scan f ( "% s" , s t r) ;
printf ("String is %s\n", str);

}

Output:

String is : Anpara

Enter new value for string : Bareilly

String is : Bareilly

The next program uses the functions gets( ) and puts( ) for the input and output of strings.
"'.

J*P7.16 Program for input and output of strings using gets () and puts ( ) * J
#include<stdio.h>
main( )
{

char str[10];
printf ("Enter string ") ;
gets(str);
printf ("String is ") ;
puts (str);

}

Output:

Enter string: New Delhi
String is : New Delhi

7.5 Some Additional Problems

Problem 1
Write a program using arrays, that reads a decimal numher and converts it to (1) Binary (2) Octal or
(3) Hexadecimal depending on user's choice.



Write a program for searching an element in an array through binary search.

The prerequisite for binary search is that the array should be' sorted.' Firstly we compare th
be searched with the middle element of the array. If the item is same as the middle elemen
search is successful otherwise the array is divided into two portions, first portion contains all

/ *P7. 17 Program to convert a decimal number to Binary, octal or
hexadecimal*/
#include<stdio.h>

·main()

{

C in pepth

}

func(int num,int b)
{

}

for(j=:i-l;j>=O;j- -)
printf{ "%c", arr[j]);

rem=num%b;
num/=b;
if(rem>9&&rem<16)

arr[i++]=rem-1Q+'A' ;
else \0

arr[i++]=rem+'O' ;

int i=O, j ,rem;
char arr[20];
while(num>O)
{

int num, opt;
printf ("Enter a decimal number ") ;
scanf("%d",&num) ;
printf ("1. :Binary\n 2. Octal \n 3. Hexadecimal \n" ).;
printf ("Enter your option ") ;
scanf("%d",&opt);
switch(opt)
{

case 1:
printf ("Binary equivalent is ");'
func(num,2);
break; ,

case 2:
printf("Octal equivalent is ");
func (num, 8) ;
break;

case 3:
printf ("Hexadecimal equivalent is ") ;
func (num, 16);
break;

printf("\n");

Problem 2

176



Arrays 177

to the left of the middle element and the other one consists of all the elements on the right side of the
element. Since the array is sorted, all the elements in the left portion will be smaller than the middle
element and the elements in the right portion will be greater than the middle element. Now if the item
to be searched is less than the middle element then we search it in the left portion of the array and
if it is greater than the middle element then search will be in the right portion of the array.

Now we will take one portion only for search and compare the item with middle element of that portion.
. This process will continue until we fi~d the required item or middle element has no left or right portion
to search.

To implement this procedure we will take 3 variables viz. low, up and mid that will keep track of the
status of lower limit, upper limit and middle value of that portion of the array, in which we will search
the element. The value of the mid will lie calculated as-

mid = ( low+up) / 2

If item> arr[mid], search will resume in right portion

low = rpid+ 1 , up will remain same

If item < arr[mid] , search will resume in left portion

up = mid-I, low will remain same

If item = = arr[mid] , search is succe~sful

item found at mid position

If low> up , search is unsuccessful

item not found in array

Let us take a sorted array of10 elements. Suppose the element that we are searching is 49. The portion
of array in which the element is searched is shown with a bold boundary in the figure.

o 2 3 4 5 6 7 8 9

low =0, up = 9
mid=4

49>25
L.....--.JL...---.Ji----1i.-----I_.....I._--L_........._ ........._ ........._-J low = mid+ 1=5

low = 5, up = 9
mid = 7

low = 5, up = 6
mid = 5

low=6, up = 6
mid = 6

49<57
up = mid-l=6 .

49>30
low = mid+1=6

49 ==49
Found

/
Now let us take a case where the search fails. Suppose we are searching the element 16 that is not
present in the array.



178 C in Depth

o 2 3 4 5 6 7 8 9

low = 0, Up ':" 9
mid=4

16<25
up=mid-l=3

low = 0, up = 3
mid = I

16>15
low=mid+1=2

low = 2, up= 3
mid=2

16<18
up=mid-l=1

Now low = 2 and up = 1, the value of low has exceeded the value of up so the search is unsuccessful.

/*P7.l8 Program to search an element through binary search*/
#include <stdio. h>
#define SIZE 10
main( )

int arr[SIZE);
int low,up,mid,i,item;
printf ("Enter elements of the array(in sorted order)
for(i=O;i<SIZE;i++)

scanf("%d",&arr[i);
printf ("Enter the item to be searched ") ;
scanf("%d",&item) ;
low=O;
up=SIZE-l;
while(low<=up&&itern!=arr[mid)
{

\n") ;

'--,

mid=(low+up)/2;
if(item>arr[mid) )

low=mid+l; /*Search in right portion */
if (i tern <arr [mid) )

up=mid-l; /*Search in leftportion */
if(item==arr[mid)

printf ("%d found at position %d\n", item,mid+l);
if(low>up)

printf ("%d not found in array\n", item);

Write a program to sort the elements of a I-D array, in ascending order through selection sort.

Sorting is a procedure in which the given elements are ·arranged in ascending or descending order. Fo
example if the elements of an array are-

S, 11, 15, 8, 7, 54, 63, 44

After sorting these clements in ascending order the elements would be- .

5, 7, 8, n, 15,44; 54, 63

/.
Problem 3



C in Depth Arrays

16<25
=mid-1=3

16>15,
ow=rrrid+1=2

16<18
up--mid-1=1

h is unsuccessful.

:::-ch*/

\n") ;

There are several methods for sorting an array, we'li discuss onI)
insertion). These are discussed in Problems 3, 4 and 6 respectivel

As the name suggests, selection sort technique selects an element a
have a list of elements in unsorted order and you want to sort it, tl
and keep in the new list, after that second smallest element and so (

Let us take an array arr[O], arr[I] arr[N-l] of elemen

Pass 1:

Compare arr[O] with other elements from arr[l,]. arr[N-l] one I

exchange arr[O] with the element being compared.

Result: arr[O] is sorted.

Pass 2:

Compare arr[ 1] with other elements from arr[2] arr[N-1] one b
exchange arr[ 1] with the element "being compared..

Result: arr[O], ariD] are sorted.

Pass 3:

Compare arr[2] with other elements from arr[3] arr[N-l], wh
arr[2] with the element being compared.

Result: arr[O], arr[l], arr[2] are sorted.

Pass N-l:

Compare arr[N-2] with arr[N-l], if arr[N-2] is bigger then exchar

Result : arr[O] ..................... arr[N-1] are sorted.

Let us take a list of elements in unsorted order and sort them by a

Elements of the array are-

40 20 50 .60 30 10

Pass 1:

40 20 50 60 30 10 arr[O] > arr[l],

20 40 50 60 30 10 arr[O] < arr[2]

20 40 50 60 30 10 arr[O] < arr[3]

20 40 50 60 30 10 arr[O] < arr[4]
~ selection sort. I 20 40 50 60 30 10 arr[O] > arr[5],
escending order. For

I

2010 40 50 60 30

Pass 2:

10 40 50 60 30 20 arr[l] < arr[2]

10 40 50 60 30 20 arr[l] < arr[3]



\

Passl Pass 2 vass 3 Pass 4 Pass 5

i=O i=2 i=3 i=4
j=1 j=5 j=3 j=4 j=5 j=4 j=5 j=5

0 ,,40 ,20 10 10 10 10 10 ..10
1 ),zJl 40 20 20 20 20 20 20
2 50 50 ·sQ. 50 (flO 30 30 30
3 60 60 60 60 60 60 50 40
4 30 30 40 40 50 ,:;0. 60 60
5 10 JO 30 30 .~O 40 40 50

Ex Ex Ex Ex Ex Ex ·Ex

int arr [SIZE) ;
in t i , j , temp;
printf ("Enter elements of the array : \n") ;
for(i=O;i<SIZE;i++)

scanf("%d",&arr[i));
for(i=O;i<SIZE-l;i++)

for(j=i+lfj<SIZE;j++)

/*P7.l9 Program of sorting using selection sort* /
#include <stdio. h>
#define SIZE 10
main( )
{

180 C in Depth

10 40 50 60 30 20 arr[ 1] > arr[4], Exchange

10 30 50 60 40 20 arr{l] > arr[5], Exchange

10 20 50 60 40 30

Pass 3:

10 20 50 60 40 30 arr[2] < arr[3]

10 20 50 60 40 30 arr[2] > arr[4], Exchange

10 20 40 60 50 30 arr[2] > arr[5], Exchange

10 20 30 60 50 40

Pass 4:

10 20 30 60 50 40 arr[3] > arr[4], Exchange

10 20 30 50 60 40 arr[3] > arr[5], Exchange

10 20 30 40 60 50

Pass 5:

10 20 . 30 40 60 50 arr[4] > arr[5], Exchange

10 20 30 40. 50 60

Sorted array is:

10 20 30 40 50 60

The exchanges taking place in the passes are shown in the figure below-



Arrays

if(arr[i]>arr[j])
{

temp=arr[i] ;
arr [i] =arr [j ] ;
arr[j]=temp;

181

} .

printf ("Sorted array is
for(i=O;i<SIZE;i++)

printf("%d ",arr[i]);
printf (" \n");

}

Problem 4

\n") ;

Write a program to sort the eleme?ts of a I-D array, in ascending order through bubble sort

If N elements are given, then the procedure for sorting them through bubble sort is as-

The elements of array are arr[O],arr[I] , arr[N-l]

Pass 1:
Compare Olh and 15

1. element, If Olh > 151 then exchange them

Compare 151 and 2nd element, If 151 > 2nd then exchange them,

Compare 2nd and 3'd element, If 2nd > 3'd then exchange them,

Compare N-21h with N-l lh , If N-2 1h > N_ph then exchange them

Pass 2:

Compare Olh and 151 element, If Olh > 151 then exchange them

Compare 151 and 2nd element, If 151 > 2nd then exchange them,

Compare 2nd and 3'd element, If 2nd > 3'd then exchange th.em,

Compare N-3 1h and N-21h element, If N-3 1h > N-21h then exchange them

Pass N-l:
-

Compare Olh and 151 element, If Olh >151 then exchange them

Let us take a list of elements in unsorted order and sort them by applying bubble sort. .

Elements of the array are-

40

Pass 1:

40
20

20

40

20

50

50

50 60

30

30

30

10

10

10

arr[O] > arr[I], Exchange

arr[ 1] < arr[2-]



182

40 '50
40 50

40 50

40 50

30
30
10

C in Depth

arr[O] < arr[ 1]
arr[l] > arr[2], Exchange

arr[O] < arr[l]

arr[l] > arr[2], Exchange

arr[2] > ,arr[3], Exchange

arr[O] > arr[l], Exchange

arr[O] < arr[ 1]

arr[l] < arr[2]

arr[2] > arr[3], Exchange

arr[3] > arr[4], Exchange

arr[2] < arr[3]

arr[3] > arr[4], Exchange

arr[4] > arr[5], Exchange

60
60

60
60
60

60
60
60
60

60
60
60
60
60

10

10
10
60

50

50

50

50

50

50

50

50

50

10

10
10

10
50

30

30
60
10

40

40

40
40

40

30

30

30
50
10

10
10.
10
40

60
60
30

30

30

30

10
10
30

30

30
40
10

50

50
50
30

30

40
40
30

30

40
40
40

40

40

20

20

20

20

Pass 2:

20
20

20

20

20

Pass 3:

20
20

20

20

Pass 4:

20
20

20

PasS 5:

20 10
10' 20

r

Sorted array is-

10 20 30 40 50 60

i=4
j=O

~O

;,10
30
40
50
60

Ex

Pass 4 Pass 5

i=2
j=O

,20
",4,0,
30
10
50
60

Pass 3Pass 2

j=2

20
40
,SO
6.0
30
10

Passl

i=O
j=O

o 40
1 ,~O,

2 50
3 60
4 30.
5 10

Ex

/ *P7 .20 Program of sorting using bubble sort * /
#include <stdio. h>
#define SIZE 10
main( )



Arrays

int arr[SIZE];
int i,j,temp;
printf ("Enter' elements of the array : \n") ;
for(i=O;i<SIZE;i++)

scanf("%d",&arr[i]);
for(i=O;i<SIZE-l;i++)
{

for(j=O;j<SIZE-l-i;j++)
{

if(arr[j]>arr[j+l])
{

temp=arr[j] ;
arr[j]=arr[j+l];
arr[j+l]=temp;

}

printf ("Sorted array is : \n") ;
for(i=O;i<SIZE;i++)

printf("%d ",arr[i]);
printf("\n") ;

Problem 5

183

Write a program to insert an element in a sorted l-D array at proper place, so that the array remains
sorted after insertion also.

Suppose we have an array of size 10 and there are nine elem<;:nts in it which are in ascending order,
one rightmost space is empty for the new element to be inserted.

'---2----1-_4 ----L-._
6
---L_

9
--L.._

1_2 --11_1_5_1 16° 123 456
I 19 1_2_°-L-I_

7 8 9

•

To insert an item, we'll compare it with the elements of array from the right side and keep on shifting
them to the right. As soon as we get an element less than the item we'll stop this process and insert
the item. Suppose we have to insert the number 13 in the array-

After insertion the array becomes-



for(i=O;i<SIZE;i++)
printf("%d ",arr[i]);

printf("\n") ;

int arr [SIZE] ;
int i, item;

printf ("Enter elements of the array (in sorted order)
for (i=O; i<SIZE-1; i++) / *rightmost space in array should

scanf("%d",&arr[i]);
printf ("Enter the item to be inserted ") ;
scanf("%d",&item) ;
for(i=SIZE-2;item<arr[i]&&i>=0;i- -)

a'rr[i+l]=arr[i]; I*Shift elements to the right*/

/*Insert item at the proper place*/

\n" ) ;
be empty* I

C in Depth

i tern in a sorted array at the proper place
to the right * I

insert an
elements

arr[i+1]=item;

/*P7.21 Program to
by shifting other
#include<stdio.h>
#define SIZE 10
main ( )
{

184

The condition i>=O in the loop is there because if the item is to be inserted at Oth place, then value of
i will become -1, but· a[-1] is not a valid element.

Problem 6

Write a program to sort the elements of a I-D array, in ascending order through insertion sort.

To sort an array through insertion sorting we'll use the insertion procedure described in the previous
program. Here we will place each element of array at proper place in the previously sorted element...
list.

Let us take there are N elements in the array arr. Then process of inserting each element il1 proper
place is as-

Pass 1:

arr[l] is inserted before or after arr[O].
So arr[O] and arr[ 1] are sorted.

Pass 2:

.arr[2] is inserted before arr[O], in between arr[O] and arr[l] or after arr[l].
So arr[O], arr[ 1] and arr[2] are sorted.

Pass 3:

arr[3] is inserted into its proper place in array arr[O], arr[l], arr[2]
So arr[O], arr[l], arr[2], arr[3] are sorted.



Arrays 185

Pass N-l:

arr[N-l] is inserted into its proper place in array

arr[O], arr[l], arr[N-2]
So arr[O], arr[I] arr[N-l] are sorted.

Let us take a list. of elements in unsorted order and sort them by applying insertion sort.

90 30 10 40 50 20 100 70 80 60
k=l, Insert item = arr[l] = 30 in 90
k=2, Insert item = arr[2] = lOin 30 90
k=3, Insert item = arr[3] = 40 in 10 30 90
k=4, Ins~rtitem=arr[4]=50 in 10 30 40 90
k=5, Insert item = arr[5] = 20 in 10 ·30 40 50 90
k=6, Insert item = arr[6] = 100 in 10 20 30 40 50 90
k=7, Insert item = arr[7] = 70 in 10 20 30 40 50 90 100

k=8, Insert item = arr[8] = 80 in 10 20 30 40 50 70 90 100
k=9, Insert item = arr[9] = 60 in 10 20 30 40 50 70 80 90 100

/ *P7. 22 Program to sort numbers using insertion sort * /
#include <stdio. h>
#define SIZE 10
main()

int arr[SIZE);
int i, k, item;
printf ("Enter elements of the array : \n") ;
for(i=O;i<SIZE;i++)

scanf("%d",&arr[i));
for(k=l;k<SIZE;k++)
{

item=arr[k); /*item is to be inserted at proper place*/
for(i=k-l;item<arr[i)&&i>=O;i- -)

arr[i+1)=arr[i) ;
arr[i+l)=item;

}

printf ("Sorted array is : \n") ;
for(i=O;i<SIZE;i++)

printf("%d ",arr[i));
printf (" \n") ;

Problem 7

Write a program for merging two sorted arrays into a third sorted array

If there are two sorted arrays, then process of combining these sorted .arraysinto another in sorted
order is called merging. Let us take two arrays arr1 and arr2 in sorted order, we'll combine them into
a third sorted array arr3. '

arr1- 5 8 9 28 34



C in Depth

42

k=6

1,4 .(5 I, 81, 912:212:5 ~8 GOJ,

4033. 3025224arr2-

i=O

~
i=O

~
i=l

~
i=2

~
i=3

~

We'll take one element from each array, compare them and then take the smaller one in third array.
This process will continue until the elements of one array are finished. Then take the remaining elements
of unfinished array in third array. The whole process for merging is shown below. arr3 is the merged
array, i, j, k are variables used for subscripts of arrI, arr2, arr3 respectively.

Initially i = 0, j = 0, k = °

186

Now take 40, 42 in arr3 because arri has no more elements to compare.

So finally the array arr3 is-

arr3-

/*P7.23 Program for merging two sorted arrays into a third sorted array* /
#include<stdio.h>
#define SIZEl 5
#define SIZE2 7
#define SIZE3SIZE1+SIZE2
main ( )
{

int arrl[SIZE1),arr2[SIZE2),arr3[SIZE3)i
int i,j,ki



Arrays

printf ("Enter elements of the array arrl (in sorted order)
for(~=O;i<SIZE1;i++)

scanf("%d H ,&arrl[iJ);

1

\n H
) ;

printf ("Enter elements of the array arr2 (in sorted order) : \n H
) ;

for(i=O;i<SIZE2;i++)
scanf("%d~,&arr2[iJ);

i=O,j=O,k=O;
while«i<SIZE1)&&(j<SIZE2))
{

if(arrl[lJ<arr2[jJ)
arr3[k++J=arrl[i++J;

else
arr3[k++J=arr2[j++J;

}

while(i<SIZE1) /*Put . remaining elements of arrl into arr3*/
arr3[k++J=arrl[i++J;

while(j<SIZE2) /*Put· remaining elements of arr2 into arr3*/
arr3[~++J=arr2[j++J;

printf ("Merged array arr3 is
for(i=O;i<SIZE3;i++)

printf("%d ",arr3[iJ);
printf("\n H

) ;

}/*Enct_.of main() */

Problem 8

\n H
) ;

Write a program to print the Pascal triangle using a 2-D array. In program P6.30, we had printed this
triangle using functions. .

We'll calculate and store all the elements of Pascal triangle in a 2-D array. Form the figure we can
observe that-
(i) All the elements of Column °are 1.
(ii) All the elements for which Rowand Column are same, are 1.
(iii) Any other element can be obtained by adding two elements of previous row as-

a[i][j] = a[i-1][j-1]+a[i-1][j];
where i and j represent row and column number.
/*P7.24 Program to print the Pascal triangle*/
#include<stdio.h>



•

188
c

#define MAX 15
main ( )
{

inta [MAX] [MAX] ;
int i,j,n;
printf ("Enter n :");
scanf ("%d" ,&n) ;
for(i=O;i<=n;i++)

for(j=O;j<=i;j++)

if(j ==0 II i==j)
ali] [j]='l;

else
ali] [j]=a[i-1] [j-1]+a[i-1] [j];

}

for(i=O;i<n;i++)

for(j=O;j<=i;j++)
printf("%5d", a[i][j]);

printf("\n") ;

Problem 9

C in Depth

Write a program to print the magic matrix.
(i) Magic matrix is a square matrix of order n x n, i.e. number of rows is equal to number of columns.
(ii) A magic matrix exists only for odd values of n.
(iii) The numbers in matrix will be I, 2, 3, 4 n2 and each number can occur in the matrix only

once.
(iv) The sums of elements of every row, column, and diagonal are equal. This sum is always equal

to n(n2+1)/2.

The magic matrices for n = 3, n = 5, n = 7 are shown below-

2 9 4'

7 5 3

6 1 8

n=3
Sum = 15

9 2 25 18 11

3 21 19 12 10

22 20 13 6 4

16 14 7 5 23

15 8 1 24 17

n=5
Sum = 65

20 11 2 49 40 31 22

12 3 43 41 32 23 21

4 44 42 ~3 24 15 13

45 36 34 25 16 14 5

37 35 26 17 8 6 46

29 27 18 9 7 47 38

28 19 10 1 48 39 30

n=7
Sum=175

The procedure for creating a magic matrix is as-



Arrays 189

Start filling numbers from the centre column of bottom row, so initially place the number 1 in the centre
column of bottom row. Keep on placing the numbers by moving one TOW down and one column left
(down-left) till you reach one of the following situations-

(i) If you reach at the bottom left of the matrix, or a square that is already filled then mo~e one row
up in the same column. This situation will arise when previously placed number was divisible by
n.

(ii) If you have to move left of the leftmost column, then go to the rightmost column.

(iii) If you have to move down the bottom row, then go to the topmost row.

/ *P7 . 25' Program to print the magic matrix* /
#include<stdio.h>
#def ineMAX 2 O·
main( )
{

int a [MAX] [MAX] . i. j • n, num;
printf("Enter value of n(odd value) ");
scanf ("%d" ,&n) ;
i=n-l; /*Bottom row*!
j=(n-l)!2; !*Centre column*!

for(num=l;num<=n*n;num++)

a [ i] [j ] =n urn;
i++; !*move
j - -; ! *move
if (num%n==O)
{

i-=2;
j++;

}

if (i==n)
i=O;

if (j==-l)
j =n-l;

}! *End or for*!
for(i=O;i<n;i++)

down*!
left*!

/*one . above the previous row*!
! *back to the previous column*!

/ *go to topmost row* I

! *go to rightmost column* /

for (j = 0; j <n; j + + )
printf("%4d",a[i] [j]);

printf("\n") ;

Problem 10

Write a program to print Spiral Matrix.

A spiral matrix is n x n square matrix formed by placing the numbers 1, 2, 3,4 n2 in spiral form
starting form the leftmost column and topmost row. Spiral matrices can exist for both even and odd
values of n. The spiral matrices for n = 3, n = 4, n = 7 are shown below-



/*P7.26 Program to print the spiral matrix*/
#include<stdio.h>
#define MAX 20
main ( )
{

int n,i=O,j=O,l,u,num=l,arr[MAX] [MAX]={O};
printf ("Enter value \ of n ") ;
scanf("%d",&n) ;
l=O;u=n-l;
for (num=l;num<=n*n;num++)

arr [ i] [j ] =num;
if(i==l&&j<u)

j++;
else if(j==u&&i<u)

i++;
else if (i==u&&j>l)

j - -;

else if (j ==l&&i>l)
i"- -;

C in Depth

n=7

1 2 3 4 5 6 7
24 25 26 27 28 29 8

23 40 41 42 43 30 9

22 39 48 49 44 31 10

21 38 47 46 45 32 11

20 37 36 35 34 33 12

19 18 17 16 15 14 13

n=4

/*If square already filled*/

1 2 3 4

12 13 14 5

11 16 15 6

10 9 8 7

n=3

1 2 3

8 9 4

7 6 5

u- -;
i++;
j++;

1++;

if(arr[i] [j] !=O)
{

190

}

} / *End of for* /
for(i=O;i<n;i++)
{

for(j=O;j<n;j++)
printf("%4d",arr[i] [j]);

printf("\n");
L_



Arrays

Exercise
Assume that stdio.h is included in all the programs.
(1) main( )

(

int i,size=5,arr[size];
for(i=O;i<size;i++)

scanf("%d",&arr[i]) ;
for(i=O;i<size;i++)

printf("%d ",arr[i]);

(2) main(
(

int arr[4]={2,4,8,16},i=4,j;
while(i)
{

j=arr[i]+i;
i- -;

}

printf ("j=%d\n", j);

(3) main (

int i=O,sum=O,arr[6]={4,2,6,O,5,lO};
while(arr[i] )
{

sum=sum+arr[i] ;
i++;

191

}

printf("sum

(4) main(
{

%d\n" , sum) ;

int i, arr [8] = {l, 2,3,4,5,6,7.8} ;
for (i=7; i>=O.; i- -)

printf ("%d\t". - -arr [- -i]);

(5) main (
{

int arr[5]={5,lO,15,20,25};
func (arr) ;

}

func (int arr [ ])
(

int i=S, sum=O;
while(i>2)

sum=sum+arr [- -i] ;



in t x [ 10] , y [3] [4] , z [2] [3] [5] ;

printf("%u \t %u \t %u\n",sizeof(x),sizeof(y),sizeof(z»;

C in Depth

%d\n", arrl [0], arrl [4]);
%d\n", arr2 [0], arr2 [4]);

%d\n" ,a, b) ;
arrl[4]
arr2[4]%d,

%d,

%d\n, "sum);

int a=4,b=6;
int arrl[5]={l,2,3,4,5};
int arr2[5]={6,7,8,9,10};
swapvar(a,b) ;
swaparr(~rrl,arr2) ;
printf ("a = %d-, b
printf ("arrl [0]
printf("arr2[0]

(7) maine

printf("sum

(6) main (
{

192

•
}

swapvar(int a,int b)
{

int temp;
temp=a,a=b,b=temp;

}

swaparr (int arrl [5] ,int arr2 [5] )
{

int i,temp;
for(i=0;i<5;i++)
{ temp=arrl [i] , arrl [i] =arr2 [i], arr2 [i] =temp;

(8) maine
{

int i,j,arr[3] [4]={{l,2,3,4}, {5,6,7,8}, {9,10,1l,12}};
for(i=0;i<4;i++) I

{

for(j=O;j<3;j++)
pr in t f ( "% 3 d" , arr [j ] [i] ) ;

printf ("\n");

(9) #include<math.h>
maine )
{

int i,j,arr[200];
for(i=2;i<200;i++)

arr[i]=l;
for(i=2;i<=sqrt(200) ;i++)

for(j=i*2;j<200;j+=i)



Arrays

arr[j]=O;
for(i=2;i<200;i++)

if(arr[i]==l)
printf("%d\t",i);

(10)main(
. {

int a[10] ={2, -3, 4, -5, 6, 7,1,9, -10, -ll};
int i,j,x,k=O;

for(i=0;i<10;i++)
{

x=a[k] ;
if (x<O)
{

for(j=k;j<10;j++)
a[j]=a[j+1];

a[9]=x;

else
k++;

}

for(i=0;i<10;i++J
printf("%d ",a[i]);

printf ("\n");

1~

Programming Exercise
1. Write a program to accept n numbers and display the sum of the highest and lowest numbers.

2. Write a program to accept n numbers in array and display the addition of all even numbers and
.multiplication of all odd numbers. . "-

3. Write a program to sort numbers of a one-d array in descending order using
(i) selection sort (ii) bubble sort (iii) insertion sort

4. Write a function to reverse only first n elements of an array.
5. Write a _program to modify the elements of an array such that the last element becomes the first

element of the array and all other elements are shifted to right.

123456789 -7 9 1 2 3 4 5 678
We can say that we have rotated the array to the right by one element. Now modify tile 'above
program so that we can rotate the array by any number of elements. For example when we rotate
the array by 3 elements the result would be-
l 2 3 4 5 6 7 8 9 -7 78 9 1 2 3 4 5 6

6. Write a program to find out the determinant of a matrix.
7. Write a program to count the occurrences of a number in a matrix.

8. Write a program to store all the elements of a 2-D array in a 1-D array row-wise.
9. Write a program to find out whether a matrix is symmetric or not. A matrix is symmetric if transpose

of the matrix is equal to the matrix.



17. Write a program to sort the elements of a matrix (i) row-wise (ii) column-wise

10. Write a program to check that the elements of an array are distinct.

11. Write a program to check that the elements of a matrix are distinct.
12. Write a program to find out the sum of elements of principal and secondary diagonals of a squill

matrix.

13. Write a program to enter a square matrix of odd size and then check whether it is a magic matri
or not. Any matrix is a magic matrix if all the elements in it are distinct and the sum of elemerr
in each row, column and diagonal are equal.

14. Write a program to print the elements of a matrix spirally. For example if the matrix is

258

1 37

629

The output should be-
2 5 8 7.9 2 6 1 3 .

Answers
(1) Error, the size of an aray should be a constant expression.
(2) j = 5

(3) sum = 12
(4) 6 4 2 0
(5) sum = 60
(6) 20 24 60

(7) a = 4, b = 6
arrl[O] = 6, arrl[4] = 10

'\ € in DeptJ

132 1
3 624
575 7
8 898

(ii)

582 1
3 6 9 4--.
172 8
8 3 5 7

Matrix

125 8
3 469
127 8
3 578

(i)

582 1
3 694
172 8
8 3 5 7

Matrix

15. Write a program to reverse the rows of a matrix.

1 2 3 4 13 14 15 16
5 6 7 8 --. 9 10 11 12
9 10 11 12 5 6 7 8
13 14 15 16 1 2 3 4

16. Write a program to reverse the columns of a matrix

1 2 . 3 4 4 3 2 1
5 6 7 8 8 7 6 5
9 10 11 12 --. 12 11 10 9
13 14 15 16 16 15 14 13

194



Arrays
~

r95

arr2[0] = 1, arr2[4] = 5

Any changes made to the array inside the function are visible in the calling function.
(8) 1 5 9

2 6 10
3 7 11
4 8 12
Here the rows are printed vertically and thc columns are printed horizontally.

(9) Prints all the prime numbers less than 200. This method of finding out prime numbers is known
as Sieve of Eratosthenes. .

(10) 246 7 1 9 -3 -5 -10 -11
This program suppre3ses the negative numbers at the end of the array.



Chapter 8

Pointers·

C is a very powerful language and the real power of C lies in pointers. The concept of pointers is interesting
as well as challenging. It is very simple to use pointers provided the basics are understood thoroughly.
So it is necessary to visualize every aspect of pointers instead of just having a superficial knowledge
about their syntax and usage. The use of pointers makes the code more efficient and compact. Some
of the uses of pointers are- -

(i) Accessing array element~.

(ii) Returning more than one value from a function.

(iii) Accessing dynamically allocated memory.
(iv) I~plementing data structures like linked lists, trees, and graphs.

8.1 About Memory
...

Before studying pointers it is important to understand how memory is organized in a computer. The
memory in a computer is made up of bytes arranged in a sequential manner. Each byte has an index
number, which is called the address of that byte. The address of these bytes start from zero and- the
address oflast byte is one less than the size of memory. Suppose we have 64 MB of RAM, then mem:'ory
will consist of 64 * 220 = 67108864 bytes. The address of these bytes will be fr.om 0 to 67108863.

. .. 1 "".

0, 1 2 3 4 5 67108863

We have studied that it is necessary to declare a variable before using it, since compiler has to reserve
space for it. The data type of the variable als9 has to be mentioried so that the compiler knows how
much space needs to be reserved. Now let us see what happens when we declare a variable. Suppose
we declare a variable age of type int- .

int ag~;.

The compiler reserves 2 consecutive bytes from memory for this variable and associates the name age
~ith i~. The address of first byt~ from the two allocated bytes is known as the address o~ variable
age.



Pointers 197

Suppose compiler has reserved bytes numbered 2588 and 2599 for the storage of variable age, then
the address of variable age will be 2583. Let us assign some value to this variable-

, .' .' 1-

age = 20; ,

Now this value wj11 be stored in these 2 bytes (of course in binary form). The number of bytes allocated
will depend on the data type of variable. For' example 4 byte.§ would:_have beeJLaJJo_c<lt~d foCa'flo&.
variable and the Cl.ddress_of first byte would be called the add~ess of the variable. Now we wilhee
how to find out the addres's of a variable. . ,

8.2 Address Operator
C provides an address operator '~', which returns.the address ,of a variable when placed before it.

. I • • ' .. _ ,

This operator can be read as "the address of ", so &age means address of age, similarly &sal means"
address of sal. The following program print~ the address of variables using address operator.

/*P8.1 Program to print address of variables using address operator*/
#include<stdio.h>
main( )
{

int age=30;
float sal=1500. 50;
printf ("Value of age
printf ("Value of' sal

%d, Address of age,= %u\n",age,&age);
%f, Address of sal,= %u\n",sal,&sal);

}

Output:

Value of age = 30, Address of age = 65524

Value of sal = 1500.500000, Address of sal = 65520

Here we have used %u control sequence to print the address, but this does not mean that addresses.
are unsigned integers: We have used.it since there is no specific control sequence to display address~.

Addresses are just whole numbers. These addresses may be. different each time you nm your program,
it depends on which part of memory is allocated by operating system for this program.

The address operator cannot be used with a, constant or an expression.

&j; /*Valid, used with a variable*/

&arr[ 1]; /*Valid, used with an array element */

&289; /*Invalid, used with a constant*/

&(j+k); /*Invalid, used with an expression*/

This address operator is not new. for us,~ we have already used it in scanf( ) function. The address
of variable ~s provided to scanf( ), so that it kno,:"s where to write the input value. So now you can
understand why '&.' was, placed be~ore the variable names in scanf( )"

8.3 Pointers Variables:
Finally after this brief introduction, it is time to introduce pointers.A p-ointer is a_variable that store~ .
memory addr.ess. Like all other variables it also has a name, has to be declared and oGcupies sQme
spacei~emory. It is called pointer beca~se it points to a particular location in ~emory by storing
the address of that location.



Like other variables, pointer variables should also be declared before being used .. The general syntax
of declaration is-

data_type *pnamei

Here pname is the name of pointer vari<\ble, which should be a valid C identifier. The aster~sk '*' preceding
this name informs the compiler that the variable is declared as a pointer. Here data type is known as
the base type of pointer. Let us take some pointer declarations-.' -

int *iptr;

float *fptr;

char *cptr, chI, ch2;

Here iptr is a pointer th,at should point to variables of type int, similarly fptf and cptr should point to
variables of float and char type respectively. Here type of variable iptr is 'pointer to inC or (int *), or
we can say that base type o( jptr is iQJ. We can also combine the declaration of simple variables. and
pointer variables as we have done in the third declaration statement where chI and ch2 are declared
as variables of type char.

Pointers are also variables so compiler will reserve space for them and they will also have some address .
All pointers irrespective o'f their base type will occupy sa~e sp~ce in memory since all of them cont~in
addresses o~ly. Generally 2 bytes ar~ used to store an address (may vary in different computers), so
the compiler allocates 2 bytes for a pointer variable.

Now the question arises that when all the pointers contain addresses only and each oile occupies 2
bytes, then why we have to mention the data type in the declaration statement. We will come to know
about this when we study.about indirection operator and pointer arithmetic.

8.3.2 ,Assigning Address To Pointer Variables

/

C in Depth

Declaration Of Pointer Variables8.3.1

198

•

When we declare a pointer variable it contains garbage value i.e, it may be pointing anywhere in the
memory. So we shOl;lld l\lways assign an address before using it in the program. The use of an unassigned
pointer may give unpredictable results and even cause the prograill to crash. Pointers may be assigned
the addres~ of a variable' using assignment statement. For example- .

int~ptr, age = 30; , ~ r \.'"", /! ._.'''Or<!Jc.._
float *f1ptr, sal = 1500.50; /.....,... '))1\ ,/ ) - -\......) . { C (1 '-.\-0
iptr = &age; . fa '-"-,) ------l J ,j .•
[ptr = &~al;, ! ('1- :: J '2 .) It .. ('

Now iptr contains the address of variable flge i.e. it point,S to variable age, similarly fptr points to variable
sal. Since iptr is declared as a pointer ~f type, int, we'sholild assign address of only integer variables
to it. If we assign .address of some other data type then compiler won't show any error ,but the output
will be incorrect.



Pointers

5000 500J ( ~5~ \ 55~";r 5524 ~I------'.I·'.<0'30 . I
iptr~age

~50Q 4501 ~ 5521 5522 5523,

L ?5201L I -C_...;,.15_0_0_.5_0 1

fPtr sal

We can also initialize the pointer at the time of declaration. But in this case the variable should be declared
before the pointer. For example-

int age = 30, *iptr = &age;
float sal = 1500.50, *fptr = &sal;

It is also possible to assign the value ofo~~iableto t~e othe~, provided their base type is
same. For example if we have an integer pointer pI then we can' assign the value of iptr to it as- .

e--- I r . ,

pI = iptr;

Now both pointer variables iptr and pI contain the address of variable age and point to the same variable
.~ . - . , . . .

~-

We can assign constant zero to a pointer of any type. A symbolic constant NULL is defined in stdio.h,
which denotes the value z~ro. The as'signment ofNULL to a pointer' guar~nteds that it does not point
to any valid Iuerriory location. This can be done as-

ptr = NULL;

8.3.3 Dereferencing Pointer Variables

Till now we have done a lot of programming and in all our programs we have used the name of a
vanab'le foraccessingji. We can also access a variable indirectly using pointeJ.s. For this w~ \~ill use
the indirection operatQr( * ). By placing the indirection operator before a pointer variable, we can access
tile-'.'.aria]Jle whose address IS stored in the p~inter. Let us take an eXaI~ple- .

int a = 87
float b",= 4.5;

int pI = &a;
float *p2 = &b;

In our program, if we place'*? before pI then we can access t1).e variab!e whose address is stored
in p 1. Since pI contains the address of variable a, we can access the variable a by writing *p1. Similarly
we can access variable ~ by writing *p2.. So we can use *p.l and *p2 in place of variable names a



/ *PB .2 Program to dereference pointer variables * /
#include<stdio.h>
main( )
{

a = 9;

a++;

x = b + 10;_

print("%d %f', a, b );

scanf("%d%f ", &a, &b );

C in Depth

%u\n",pl);
%u\n",p2),

of a
of b

is equivalent to

is equivalent to

is equivalent to

is equivalent to

is equivalent to

Address
Address

int a=B
float b=4.5,
int *pl=&a,
float '!'p2=&p,
printf ("Value of pl =
printf ("VeHue of p2 =
printf ("Adc:rress of pl %u \n" ,&pl) ;
printf ("Address of p2 %u \n", &P2) ,
p r i n t f ( "Val u e 0 f a -, %d %d %d \ n" , a, *p 1 , * (& a) ) ;
printf ("Value of b %f %f %f \n", b, *p2, * (&b.) ) ;

_*p 1_= 9;

(*pl)++;

x = *p2 + 10

printf("%d %f', *pl, *p2 );

scanf("%d%f', pI, p2 );, -'

and b anywhere in our program. Let us see some examples-

200

The indirection operator can be read as 'value at the address'. For example *pl can be read as 'value
,at the address pI'. This indirection operator (*) is different from the asterisk that was used while declaring
the pointer variable.

Now we will see what is meant by the term *(&age), where age is a variable. Since &age is an address,
so dereferencing it with *. operator will gi'{e. the variable at that address and the variable at that address
is age. Hence *(&age) is same as writing age.

}

Output:
Value of pI = Address of a = 65524 "
Value of p2 = Address of b = 65520
Address of pI = 65518.
Address of p2 = 65516
Value of a = 87 87 87
Value of b = 4.500000 4.500000 4.500000

We have already seen that while declaring a pointer variable, we have to mention the data type. The
reason is that when we use the indirection operator, the number of bytes retrieved will be different for
different data types. The value of the pointer only tells the address of starting byte. For example suppose'
we have a pointer ptr which contains the address 2000 and when we write. *ptr. the compiler k~ows

that it has to access the information starting at address 2000. "So the compiler will look at the base
type of the pointer and will retrieve the information depending on that base type. ,For example i~ base
type is int then 2 bytes information will be retrieved and if base type is float, 4 bytes information will
be retrieved and so on. The following figures illustrate this fact. The shaded portion shows the num1;ler
of bytes retrieved. . -



4500 4501 4502 4503 4504 4505 --------

----1~~~~ __

Pointers -

char *pI;

int *p2;
"

float *p3;

1200 1201 2622 2633 2644 2655 2666 2667
I 2662 II----.~~,----

pI

1992 1993 6050 6051 6052 6053 6054 6055

16050 II----.~~--
p2

2560 2561

I 4500

p3

201

)

double *p4;

p4-

The size of pointer variable is same fo~ all type of pointers but the memory that will be accessed v.:hile
dereferencing is different.

/*P8.3 Program to print the size. of pointe~ variable and size of value
dereferenced by that pointer* /
#include<stdio.h>
main ( )
(

char a= 'x' , *pl-=&a;
int b=12, *p2=&b;
float c=12.4,*p3=&c;
double d=18.3,*p4=&d;
printfl"sizeoflpl) %d
printf("sizeof(p2) %d
printfl"sizeoflp3) %d
printf ("sizeof Ip4) %d

}

Output:

sizeof(p 1') = 2 , sizeof(*p 1) = 1
~'--:::",,:;::,.-' ~ ~-

sizeof(p2) = 2 , sizeof(*.£7) = ~

sizeof(p3) = 2 , sizeof(*.Q...3) =-1..
sizeof(p4) = '2 , sizeof(*p4) =!-

8.4 Pointer Arithmetic

sizeof(*pl)=
sizeof(*p2)
sizeof l*p3)
sizeofl*p4)

%d\nU,sizeof(pl),sizeof(*pl));
%d\n U,sizeof(p2) ,sizeof(*p2));
%d\n U,sizeof(p3),sizeof(*p3) );
%d\n U,sizeof(p4),sizeof(*p4));

All types of arithmetic operations are not possible with pointers. The only valid operations that can be
performed are as- •

(I) Addit~on of an integer to a pointer and increment operation. _

(2) Subtraction of an integer from a pointer and decrement operation

\(3) Subtraction of a pOInter from another pointer of same type.)

Pointer arithmetic is somewhat different from ordinary arithmetic. Here all arithmetic is performed relative



202 C in DJth
to the size of base type of pointer. For example if we have an integer pointer pi which contains address
1000 then on incrementing we get 1002 instead of 100 I. This' is because the size of int data type is
2. Similarly on decrementing pi, we wi!! get 998 instead of 999. The expression ( pi+3 ) will represent
the address 1006. Let us see some p9'1nter arithmetic for int, float and char pointers.

int ~ = 5, *p) = &a' r
float b = 2.2, *e.t = &b;
char c = 'x', *pc= &c;

Suppose the address of variables a, ? and care !.QQ9, 49.QV,~ respectively, so initially values of
pI, p2, p3 will be 1000, 4000 and 5000. -..

r:""t"t; or ++pi; pi =.!.Q9Q + J:. = 1002 (Since iut is of 2 bytes)
pi = pi-3; ./ pi =1002 - 3*2 = 996. ~

pi = pi+5; . pi =996 + 5*2 = 1006
pi--; or --pi; pi =1006 - 2 = 1004

pf = 4000 + 4 = 4004 (Since float is of 4 bytes)
pf = 4004 - 3*4 = 3992
pf = 3992 + 5*4 = 4012

pf = 4012 - 4 = 4008

pc = 5000 + 1= 5001 (Since char is of 1 byte)

pc = 5001 - 3 = 4998
pc = 4998 + 5 = 5003
pc = 5003 - 1 = 5002

The complier scales all this arithmetic automatically since it knows the base type of pointer. The arithmetic
in the case of char pointer seems to be like ordinary arithmetic because the size of a char is 1,., byte.
The addresses of variables a, band c are not affected by these operations, only the pointer moves ahead
or backwards.

Suppose pi is an integer pointer that contains address 1000 initially.

p~++; or . ++pf;

pf = pf-3;
• pf = pf+~;

pf-, -; or - -pf;

pc++; or ++pc;

pc = pc-3;
pc = pc+5;
pc- -; or - -pc;

pI
1 00 1001 1002 1003 1004 1005 1006 1007,CD...::.·....:·.·::1:.··:::.·:.::····~·

(a) pi++;

After incrementing, pointer pi points to address 1002 and if derefrenced(*pi), then it will return
the information stored at bytes 1002 and 1003. .

5000 5001 1000 1001 1002 1003 1004 1005 1006 1007

pI
...................., '--_....r.-_-'-_---'-__'--_-'-_--'

(b) pi = pi+2:

Now pi contains address 1006, and if dereferenced it will return information stored at bytes 1006
and 1007.



Pointers

pI
1000 1001 1002 1003 1004 1005 1006 1007, " "'o=II]

\ .1 I.. ..l .

203

)

(c) pi = pi-3;
Now pi contains addre'ss 1000, and if dereferenced it will return information stored at bytes 1000
and 1001.

pI
5000 5001 1000 1001 1002 1003 1004 1005 1006 1007

o=r:..::::..:...:.:.j:.::..:: ..:....:.o=II]
(d) printf("%d", *(pi+2) );

Here the pointer will not move to address 1004 since we have not assigned any new value to it.
The Integer stored at bytes 1004 and 1005 will be printed.

pi

5000 5001 1000 1001 1002 1003 1004 1005 1006 1007

o=r::::.::::::.::J:::..:.:::....::C2LJCD \

It is important to note that when we move a pointer somewhere else in memory by incrementing/
decrementing or adding/subtracting integers then it not necessary that the pointer still points to a variable
of same data type or a valid memory location. The task of allocating memory locations to variables
is done by the compiler. We don't know where and in what order it has stored them. We should take
care that we move the pointers in such a way that they always point to valid memory locations. In
case of arrays, elements are stored in consecutive order. So this arithmetic is generally applied in arrays.

/ *P8 .4 Program to show pointer arithmetic * /
#include<stdio.h>
main(

Address of a
Address of b
Address of c

int a=5, *pi=&a; ,
char b='x',*pc=&b;
float c=5. 5, *pf=&c;
printf ("Value of pi
printf("Value of pc,
printf ("Value Of pf
pi++;
pc++;
pf++;
printf (",Now valu.e of pi
print.f ("Now value of pc
printf ("Now value of pf

}

Output:
Value of pi = Address of a = 1000

%u\n" ,pi);
%u\n",pc)\;

%u\n" ,POI;

%u\n",pi);
%u\n",pc);
%u\n",pf);

..".



204

Value of pc =Addtess of b = 400£--
Value of pf = Address of c = 8000
Now value of pi = 1002.....--,
Now value of pc = 4001~

No,,:, value of pf = 8004~

C in)Depth

/ *P8. 5 Program to understand the postfix/prefix increment/decrement· in
a pointer variable of base type int * /
#include<stdio.h>
main(

,int a=5;
int *p;
p=&a;
printf ("Value of p =
printf ("Value of P. =
printf ("Value of p
printf ("Value of p
printf ("Value of p
printf ("Value of p

Address of a
%u\n",++p);
~

%u\n",p++);
~%u\n",--p);

%u\n" -p-'-').
%u\n":p);"' '

"..

%u\n",p);

Output:

Value of p = Address of a = 1000
Value of p = 1002

Value of p = 1002
Value of p = 1002
Value of p = 1002
Value of p = 1000

"
In first printf the address of a = 1000 is printed. In second printf, first the pointer is incremented then
its value is printed. Since base type of pointer is int, hence it is incremented by 2. Similarly other printf
statements are executed.

Subtraction of a pointer from another pointer of same base type returns an integer, which denotes the
number of elements between two pointers. If we haye two int pointers ptrl and ptr2, containing addresses
3000 and 3010 respectively then ptr2 - ptrl will give 5. (since size of int is 2). This operation is generally
performed when both pointer variables point to the elements of same array.

The arithmetic operations that can never be performed on pointers are-

I. Addition, multiplication, division of two pointers.
2. Multiplication between pointer and any number.
3. Division of a pointer by any number.
4. Addition of float or double values to pointers.

8.5 Precedence Of Dereferencing Operator And /Increment/
Decrement Operators

~~~enc.Ll~vel.of* .QP~~and increment/decrement operators, is same and their associativity
is from right to left. There can be confusion while combining these oPFators in pointer expressions,

Pointers

so we should use them carefully.

Suppose ptr is an integer pointer and x in an integer variable. Now we'll see how the pointer expressions" - -----given below are interpreted.
x =; *ptr++;
x ~ ":-J::-ptr;
x .~ .++*ptr;
x = (*ptr)++;

(i) x ='*ptr++;

The expression *ptr++ is equivalent to *(ptr;+::!:), since these operators associate from right to left.
Hence the increment operator will be applied to ptr, and not to *ptr. The increment bperator is
postfix, so first the value of ptr will be used in the expression allcLthen it will be incremented.
H'ence firstly the integer pointed toby ptr will be dereferer{ced and ~sSlgneci to x and then ptr'
~i1l be incrementtrd. This is salmi as- .

x = *ptr;
ptr = ptr+ 1;. ,

(ii) x = *++ptr;
The expression *++ptr is equivalent to *(++ptr). Here also the increment operator is applied to
-' -----ptr. The increment operator is prefix, so first rtr will be incremented and then its new value will

be <Y.m:? /fi> M>e eJp/C'JJjOh!JJC2?ce »..r31))' lb.e Y1J)))e DJptr js jncremented.... then value at the new
address is dereferenced and assigned to x. 'This is same as-

ptr = ptr+1;

x = *ptr;
(iii) x = ++*ptd _

'The'e~p;~ssion ++*ptr is equivalent to ++(~). Here the increment operator is applied over *ptr_
and not ptr. So here the value of pointer' wdl not change but the value pointed to by the pofnfer
.vm. ",hanrg'_ ;.f'_. *rp-r. w.ilL incrp.mpnL SjnGf'~ th~ increment oQerator is l1refix hence first the value
of *ptr will increment and then this value will be assigned to x. This is same as-

*ptr = *ptr+ 1;
x = *ptr;

(iv) ~=:' (~pt!l++\
. Here aiso the increment operator is applied over *ptr and since it is postfix increment hence first
the value of *ptr 'will be assigned to x and then it will be incr~mented. This is same as

x = *ptr;
*ptr = *ptr+ 1;- .

Let us take an example and understand how these expressions are interpreted. Suppose value at address
2000 is 25, value at address 2002 is 38, ptr is an integer pointer that contains address 2000 hence "
of *ptr is 25. Now we'll see what will be the results in the above four cases, if this is the iniria con
in all cases~

p~
2000 2002

,......

r

206

(i) x = *ptr++;

Value of x = 25, Address contained in ptr = 2002, *ptr = 38

(ii) x = *++ptr,;

Value ofx = 38, Address contained in ptr = 2002, *ptr = 38

(iii) x = ++*ptr,?
Value of x= 26, Address contained in ptr = 2000, *ptr = 26

:tf--
(iv) x = (*ptr)++; 'J..J- .

Value of?C = 25, Address contained in ptr = 2000, *ptr = 26

C in Depth

p~
lliTI[]
2000 2002

V~ll(~a38 I
2000 2002

p~
2000 2002

p~
2000 2002

From the above four forms of pointer expressions, first one is generally used since it is used to access
the elements in an array. In the above statements we have taken increment operator, the same rules
stand for decrement operator also.

8.6 Pointer Comparisons,.
The relational operators = =, != , < , <=, >, >= can be used with pointers. The -operators = = and- ...-.
!= are used to compare two pointers for finding whether they contain same address or not. They will
be equal only if both are NULL or they contain address of same variable. The use of these oRerators
is valid between pointers or same type or between NULL pointer and any other pointer, or. b~etween
void po.inter and any other pointer. The relational operators <, >; >=, <= are valid between pointers
of same type. These operations make sense only when both the pointers point to elements of the same

'array. "

8.7 Pointer To Pointer
We know that pointer is a variable that can contain memory address. This pointer variable takes some
space in memory and hence it also has an address. We can store the address of a pointer variable in
some other variable, which is known as a pointer to pointer variable. Similarly we can have a pointer
to pointer to pointer variable and this concept can be extendeo to any limit, but in practice/0nly pointer
to pointer IS used. Pointer to pointer is generally used while passing pointer variabl~s to functions.

The syntax of declaring a pointer to pointer is as- /' I --

data_type **pptr;

Here variable pptr is a pointer to pointer and it can point to a pointer pointing to a ~ariable of type
data_type. The. double asterisk used in the declaration inforins the compiler that a pointer to poinfer
is being declared. Now let us take an example-

int a = 5;·
int *pa = &a;'

int **ppa = &pa; ~

Here type of variable a is int, type of variable pa is (int*) or pointer to int, and type of variable ppa
is (int **) or pointer to pointer .to int.

'(J

Pointers

4000 3000

3000 , If----..I 2090

.pp~ p~

20J),0 ,

f-------I*_,_5------J
a

207

(;S 52.4

, ,

Here pa is a pointer variable, which contains the address of the variable a and ppa is a pointer to pointer
variable, which contains' the address of the pointer variable pa; ,

I

We know that *pa gives value of a, similarly *ppa will give the value of pa. Now let us see what value
will be given by **ppa. .,

**p a "1', '
-7 *(*p~'l))

~
~ :sfri~e *ppa givesp~)..

-7 ~ (Since *pa gives a) , '.
\ ' ,

Hence we can see that **ppa will give the value of'k So to access the value indirectly pointed to by
a pointer to pointer, we can use double indirection operator. The table given below will make this concept
clear.

Value ofa a *pa **ppa 5
Address ofa &a pa *ppa 2000
Value ofpa &a pa *ppa 2000
Address ofpa &pa ppa 3000
Value ofppa &pa ppa 3000
Address ofppa &ppa' 4000

/ *P8. 6 Program to understand pointer to pointer* /
#include<stdio.h>
main()
{

int a=5;
int *pa;- .
int **rfE!;;
pa=&a;1
", ~

ppa=&pa; ,
print'f ("Address of a = %u\n", &a); ~

• """;-!' --:-

printfC"Value of p'a = Addre'ss of a %u\n",pa);G5S2~

printf ("Value., ot *'pa' = Value of ~ = - %d\n", <pal ;' ~
printf ("Address of" p~' = %u \n" ,&pa) ;
printf ("Value of ppa = Address of pa = %v.\n" ,ppa);
printf ("Value of *ppa =' Value of pa'= %u\n", *pI?a)';
printf("Value of *.*'ppa Value of a = %d\n",**ppa);
printf("Address'of ppa = %u\n",&ppa);

}

Output:

Address of a = 65524
Value of pa = Address of a = 65524
Value of~pa = Value of a = ~

208 C in Depth

Address of pa = 65522

Value of ppa = Address of pa = 65522

Value of *ppa = Value of pa = 65524

Value of **ppa = Value of a = 5

Address of ppa = 65520

8.8 Pointers and One Dimensional Arrays

j*P8.7 Program to print the value and addres,s of the elements of an

We can get the address of an element of array by applying & operator in front' of subscripted variable
name. Hence &arr[O] gives address O(Oth element, &arr[l] gives the address of first element and so
on. Since array subscripts start from 0, so we'll refer to the first element of array as Oth element and
so on.

The following program shows that the elements of an array are stored in consecutive memory locations.

25

2008

arr[4]

20

2006

arr[3].·

2004

arr[2]

15

arr[l]

10

2002

arr[O]

_ ';'arr[O]

~ I 5

2000

Here 5000 is the address of first element, and since each element (type int) takes 2 bytes so address
of next-element is 5002, and so on. The address of first element of the array is also known as the

_ba~aQdress of the array. So we have seen that the e1eI!lents o{irray are-;tored secluentlally in memory
.one after another. .

In C language, pointers and arrays are closely related. We can access the array elements using pointer
expressions. Actually the compiler also acces~es l:h~' array elements by converting subscript notation
to pointer notation. Following are the main poInts for understanding the relationship of poinfers with

. arrays.

1. Elements of an array are stored in consecutive memory locations.

2. The name of an array is a constant pointer that points to the first element of the array, i.e. it stores
the address of the first element, also known as the base address of array. '"

3. According to pointer arithmetic, when a pointer variable is incremented, it points to the next location
of its base type. . .

For example-

int arr[5] = { 5 , 10 ,15 , 20, 25 }

Here arr[5] is an array that has 5 elt:1Jlents each of type int.

The elements of an array are stored in contiguous memory locatIOns. Suppose we have an array arr[5]
of type int. - '

int <lJfr[5]'~ U,2,~J;:-4,-.:5}.; ._: ('f~ttJ'tcY~
This is stored in memory as- \--.t'. .

(5000

Pointers

array * /
#include<stdio.h>
main ()
{

int arr[5J={5,lO,15,20,25};
int i;
for(i=O;i<5;i++)

printf ("Value of arr [%dJ
printf("Address of arr[%dJ

%d \ t" , i, arr [i J) ;
%u\n"', i,'&arr[ij');

209

}

Output:
Value of arr[O] = 5
Value of arr[l] = 10
Value of arr[2] = 15
Value of arr[3] = 20
Value of arr[4] = 25

Address of arr[O] = 2000
Address of arr[I] = 2002
Address of arr[2] = 2004
Address of arr[3 j ~ 2006
Address of arr[4] = 2008

The name of the array 'arr' denotes the address of Olh element of array which is 2000. The address,_ --1· -' .

of Olh element can also be given by &arr[O], so arr and &arr[O] represent the same address. The name
of an array is a constant pointer, and according to. pointer arithmetic when an integer is added to a
pointer then we get the address of next element of same base type. Hence (arr+ . will denote the address
of the next element arr[l]. Similarly (arr+2) denotes the address of arr[2] and so on. In other words
we can say that the pointer expreSSiOn (arr points to 1'1 element of array, (arr+2) points to 2nd element
of array and soon.

~
~ Points to Oth elemeIlt ~ &arr[O] ~ 2000

~--,.

arr+1 ~ Points to 151 elemem ~ &arr[l] ~ .2002,.....--
arr+2 ----7 Points to 2nd element -~ &arr[2] ~ 2004
arr+3 ~ Points to 3'd element ~ &arr[3] ~ 2006
arr+4 ~ Points to 41h element ~ &arr[4] ~ 2008..,.-

In general we can write-

The pointer expression Om+i) denotes the same address as &arr[i].
Now if we dereference arr, then we get the Olh element of array, i.e. expression'*arr or *(arr+O) represents
Olh element of array. Similarly on derferencing' (arr+ I) we get the 151 element' and so on.

*arr ~ Value of Olh element ~ arr[O] ~ 5
*(arr+l) ~ Value of 1'1 element ~ arr[l] ~ 10
*(arr+2) ~ Value of 2nd element ~ arr[2] ~ 15
*(arr+3) ~ Value of 3'd element ~ arr[3] ~ 20
*(arr+4) ~ Value of 41h element ~ arr[4] 4 25

In general we can write~

*(arr+i) ~ arr[i]

So in subscript notation the address of an array element is &arr[i] and its value is arr[i], while in pointer

210 C in Depth

= %d\t",i,*.(arr+i));
%u\n", f-;a:r;+i);

..,...

notation the address is (arr+i). and the element is *(arr+i).
/*P8. 8 Program to 'print the value. and address of elements of an array
using pointer notation* /
#include<stdio.h>
main ()
{

int arr[5]={5,lO,15,20,25};
int i
for(i=O;i<5;i++)
{

printf ("Value of arr lid]
printf("Address of ,arr[%d]

}

The output of this program is similar to that of P8.7.

Accessing array elements by pointer notation is faster than accessing them by subscript notation, because
the compiler ultimately changes the ~ubscript notation to poin'ter notation and then accesses the array
elements.

Array subscripting is commutative, i.e. arr[i] is same as i[arr].

We had seen earlier that-

~r[i] is equivalent to *(arr + i L' -
Now r;(~tr+i) is ~ame as *(0":arr)', so we can write. the above statement as

a~[i] is equivalent to *(i + arr)

Now *(i+arr) can be written as i[arr] in subscript notation, so
'"'-- "0-.<

arr[i] is equivalent to i [arr]

/ * P~. 9 Program to
subscript notation
#include<stdio.h>
main()
{

print
*/

the. value of array elements using pointer... and

int arr[5]={5,lO,15,20,25};
int i=O.;
for(i=O; i<5; i++)
{

printf ("Value of ~[!~] =" , i) ;,
printf("%d\t",arrri~);

,L. .printf ("%d\t", * L~~r+i»);
_printf ("%d\t", * (i+aFr));
--printf ("%d\n", i.[arrJ) ;
printf ("Address of arr lid]

" 0-
%u\n",i,&arr[i]) ;

. -.
}

Output:

Value of arr[O] = 5/ 5
Address of arr[OJ = 2000

5 5

-0 z

Pointers 211

Value of arr[l] = 10 10 10 10
Address of arr[1] = 2002

, ,
Value of arr[2] = 15 15 15 15
Address of arr[2] = 2004
Value of arr[3] = 20 20 20 20
Address of arr[3] = 2006
Value of arr[4] = 25 25 25 25
Address of arr[4] = 2008

8.9 Subscripting Pointer Variables
Suppose we take a pointer variable ptr, and initialize it with the address of the Olh element of the array.

int * tr"l

ptr = arr; I*We could also write ptr = &arr[O] */
,.

~

ptr arr[O] arr[l] arr[2] arr[3] arr[4]

Q00.0" t----..j 5 10 I 15 20 I 25
00 '

2000 2002 2004 2006 2008

lllegal*!
illegal*1
illegal*1

ariable, all these operations are valid for- it..
/* ow ptr points to variable' n~m*/
1* ptr points to next location .*/
I*ptr points to previous location*/,

But since ptr '

ptr = ~n~

ptr++;
ptr = ptr-

On applying po' arithmetic and dereferencing we can see that the expression (ptr+i) denotes the
address of ith el 0 array and the expression *(ptr+i) denotes the value of ilh element of array.
According to e OOlIri'.''a!fmc.e of pointer and subscript notations, *(ptr+i) can be written as ptr[i]. So
if we have a po' pointing to.-the Oth element of arraYI "then 'we can access the elements of
array by sub poin variable. This equivalence of pointer and subscript notations is us~d

in dynamic e' g arrays to functions.' "

J Now let us see e between the name of an array and a pointer variable. The name
of ari array . in: er en e it will always point to the Olh element of the array. It is not
a iariable, hen igo some other address to, it neither can we move it by incrementing
or decremen .

arr = OWJLCJ.l~

arr++'
arr = arr-

/*P8.l0 Progr to print the value and address of array. elements by
subscripti g a _ ointer variable* /
#include<s ~ .=>
main()
{

int arr[-.='5,10,15,20,25};
int i, *p;

-~

212

p=arr;
for(i=O;i<5;i++)
{

C in Depth

printf("Address of arr[%d)= %u%u %u %u\n",i,&arr[i],ax-r+i,p+i,-_...- -~
&p [i]);

p-i"i";;'tf("Value of arr[%d]= %d %d %d %d \n",i,arr[iJ,*(arr+i),*(p+i),
p [i]) ;

} ----:-',} . J p-t : .
. I

Output:

Address of arr[O]= 2000 2000 2000 2000 .
.Value of arr[O] = 5 5 5 5

Address of arr[1}= 2002 ~002 2002 2002
Vallie of arr[l] = 10 10 10 10
Address of arrI2]= 2004 2004 2004 2004
Value of arr[2] = 15 15 1515
Aqdress of arr[3]= 2006 2006 2006 2006
Value of arr[3] = 20 20 20 20
Address of arr[4]~ 2008 2008- 2008 2008
Value of arr[4] = 25 25 25 25

8.10 Pointer to an Array
'- I

111_ the previous section, we had a pointer that pointed to the th element of array. We can also declare
a pointer that can point to the whole array inst:ad of only one\element of array. This p.ointer is useful
when talking about multidimensional arrays. Now we'll see ,ow to declare a pointer to an array.

~nt (*P!I')[1l!J; .
Here ptr is pointer that can point to an array of 10 integers. ote that it is necessary to enclose the
pointer name inside parentheses. Here the type of ptr is 'pointer to an array of 10 integers'. -

Note that the pointer that points to the Oth element of array and the pointer that points to the whole
array are totally different. The following program shows this'::

/*P8.11 Program.to
and pointer to an
#include<stdio.h>
main ()
{

understand di f ference

array of itegers * /
between pointer to

.t, "
an integer

%u\n" ,p,ptr);

Oth element of arr* /
the whole array arr'* /
%u\n" ,p,ptr);f&- __

int *p; / *Can point to an intege,r* /
int (*ptr) [5]; / *Can point to an array of 5

~ _".. • I

int arr5];
p=arr-;T /*Points .to

-.. ,. I

ptr=arr; /*Points to
print-to ("p = %u, ptr =
p++;
ptr++;
printf ("p = %u, ptr

integers*/
., '

Pointers 213

Output:

p = 3000 °tr =~ _

p = 3004, ptr = 3010,

crinter that points to Olh element of arrayal.!, while ptr is a pointer that points to the whole
--==--~-e type of p is 'lni;'"while base type' of prr-iS'an array of 5 integers'o e K'now"tniC

;hP-;:;;:;;;;:t?T a.-,:tlu:neltic is perfO"rmed relative to the base size, so if we write ptr++, then the pointer ptr
forward by 10 byteso The following figure shows the pointers p and ptr, in this chapter

darker arrow to denote pointer to an array.

On dereferencing a pointer expression we get a value pointed to by that pointer expression. Pointer to
an array points oto ~n array, so on dereferencing it we should get the array, and the name of array denotes'
the base add~ess. So whenever a pointer to an array is dereferenced, we get the base address of the'
array to/whlch it pointso . 0

/*P8.12 PrograOm to dereference a pointer to an array* /
#include<stdio.h>
main ()
{

int arr [5J = {3, 5,6,7,9} ;
int *p=~ar..r;

int (*ptr) [5j=arr;
printf("p = %u, ptr = %u\n",p,ptr);

. fJlilO----
printf("*p = %d, *pcr = o%u\n",*p,*ptr);
printf("sizeof(p) = %u, sizeof(*p) = %u\n",sizeof(p),sizeof(*p));,
printf(":;;izeof(ptr) = %u, sizeof(*ptr) =0 %u\n",sizeof(ptr),
sizeof (*ptd) ;

}

Output:

p = 3000, ptr = 3000

*p = 3, *ptr = ~..-
sizeof(p) = 2, sizeof(*p) = 2
sizeof(ptr) = 2, sizeof(*ptr) = 10

"

8.11 Pointers And Two Dimensional Arrays
In a two dimensional array we can access each element by using two subscripts, where first subscript
represents row number and second subscript represents the column number. The elements of 2-D array
can be accessed with the help of pointer notation also. Suppose arr is a 2-D °array, then we can access
any element arr[i][j] of this array using the pointer expression *(*(arr+i) + j). Now we'll see how

214 C in Depth

. this expression can be derived. Let us take a two dimension array arr[3][4]

int arr[3][4] = { {10, 11, 12, 13}, {20, 21, 22, 23}, {30, 31, 32, 33} };

Column 0 Column 1 Column 2 Column 3

Row 0

Row 1

Row 2 .

10 11 12 13

20 21 22 23

30 31 32 33 ~.

We have been talking about 2-0 arrays in terms of rows and columns, but since memory in computer
is organized linearly it isn6t possible to store the 2-0 array in rows and columns. The concept ofrows
and columns is only theoretical, ac1ually a 2-0 array is stored in row major order i.e. rows are placed
next to each other. The following figure ~hows how the' ab~ve .2-0 array will be stored in memory.

-==::K......_"__--.. A A __· __
(V V \
arr[O] [0] arr[~][O] arr[2] [0]

'1 10 '. Q.C] 12 L~30 '0 32 Q!]
5000 5002 5004 5006 5008 5010 5012 5014 5016 5018 5020 5022

Points to OIl 1-D array - . ,50Q.O..
Points to 1sl 1,-D array - 5008
Points to 2nd I-D array - 5016

3m)'?) ,,1\1);" .,,') q 36"0

.:-' 1 ~.
,,~.

arr I 10 11 12 13
--=<.

5'~
~

rr+l)
.,' \ \ .
20 21 22 . 23- - .../'

rr+2) 30
~

~ 31 32 33
",. .

(a

(a

Points to 01
1 element of arr

Points to 1Sl el~ment of arr' -,
Points to 2nd element of ad -

arr
arr+1
arr+2 -

Each row can be considered as a 1-0 array, so a two-dimensional array can be considered as'a collection
of one-dimensional arrays that are placed one after another, In other words we can say that a 2-0 array
is an array of arrays. So here arr is an array of 3 elements where each element is a 1-0 arr.ay of 4
integers.

We know that the name of an array is a constant pointer that points to the Olh element of array. I~ the
case of 2-0 arrays, Olh element is a 1-0 array, so the name of a 2-0 array represents a pointer to a
1-0 array. For example in the above case, arr is a pointer to Olh 1-0 array and contains address 5000.
Since arr is a 'pointer to an array of 4 integers', so according to pointer arithmetic, the expression
(arr+1) will represent the address 5008 and expression (arr+2) will represent address 5016.

So we can say that arr points to the Olh 1-0 array, (arr+1) points to the 1'1 1-0 array and (arr+2) points
to the 2nd 1-0 array. -

pointers 215

In general we can write-

, arr+i Points to ilh element of arr~ Points to ph I-D array

Since (arr+i)-points to ilh element ofarr, so on derefemcing it we'll get ilh element of arr which is of
cour~ I-D array. Hence the expression *(arr+i) gives us ~he base address of ilh I-D' array,

We have proved earlier that the pointer expression *(arr+i) is equivalent to the subscript expression arr[i] ,
So *(arr+i) which is same as arr[i] gives the base address of i!h I-D array.

*(~)_- arr[O].- Base address ofO~,I-D array - P.oints to Olh element of 011: I-D array - ~OOO ,
*(aFf+l) -"arr[I]- Base address of pi I-D array - Points to Olh element onSI I-D array - 5008 ,
*(arr+2) - arr[2] - Base address of 2nd I-D array - Points to Olh element of 2Jld I-D array --5016

In general we can write- .

*(arr+i), - arr[i] - Base address of ith l-D array - Points to _Olh element of ilh I-D array

Note that both the expressions (arr+i) and *(arr+i) are pointers, but their base type is different The
base type of (arr+i) is 'an array of 4 ints' while the base type of *(arr+i) or ~r[i] is 'int'.·. . '. -, ,.. . .

To access any individilal element of our 2-D array, ,we should be able to access any, jlh element of the
ilh I-D array. Since the base type of *(arr+i) is -'int' and it contains the address of Olh 'element of ilh- , '

I-D array, so we can get the addresses of subsequent elements in the ilh I-D array by adding integer
values to *(arr+i). For example *(arr+i)+1 will represent the address of}<l element of ilh I-D array and
*(arr+i)+2 will represent the address of 2nd element of ilh I-D array. Similarly *(arr+i)+j will represent
the address of jlh element of ilh I-D array. On dereferencing this expression we can get the jth element
of the ith I-p array.

arr

*arr

(arr+i)

*(arr+i)

, *Jarr+Q~

*(*(arr+i)+j)

Points to Olh I-D array. ..\

Points to Olh element of Olh I-D array

P~ints to ilh I-D array

Points to Olh element of ith I-D array

Points to jlh element of ilh I-D array
-.-.- - '" ..

Represents the value of jlh element of ilh I-D array

*arr

((arr+2)+3)

..... 10 11 12 13.....

... 20 21 22 23.....

..... 30 31 32 33~..... -

arr

(arr+l)

(arr+2)

t
*(arr+2)

t
*(arr+2)+3

} ;

int arr [3] (4) = {

Since ptr is a pointer to an array of integers. so according 0 pointer arithmetic, ptr+i will point

C in Dep

23 23

33 33

1313

~ 10 .11 12 13

20 21 22 23

30 31 32 33

Subscripting Pointer To An Array

ptf 5000''\

I 5QQO I

int i,j;,
for(i=9;i<3;i++)

}

Output:

Address of Oth, I-D array = 65000 65,000

10 10 11 11 '12 12

Address of lth I-D array = 65008 65008

20 20 21 21 22 22

Address of 2th I-D array = 65016 65016

30 30 31 31 32 32

{lO, 11, 12, l3},
{20,21,22,23},
{30,31,32,33}

\
printf(';Address of %dt,h ar,ray = %u %1J.\n",i J arr[iJ,*(arr+i»;
for (j = 0'; j < 4 ; j + +) ..~ , ~ J"''"'. ,.} '0 .'

printf("%d %d ",arr[i] [jJ,*(*(arr+i)+j»;
pr i n t f (" \ n");

Cnder the heading 'Subsripting Pointer Variables', we had seen how to subscript a pointer variable tl
:tains the base address of a I-D array. Now we'll see how to subscript a pointer to an array tl

ontains the base address of a 2-D array. .

uppose arr is a 2-D array with 3 rows and 4 columns and ptr is a pointer to an array of 4 intege
and ptr contains the base address of array arr.

i?t arr[3][4],= { {10, 11, 12, 13}, {20, 21, 22, 23}, {30, 31, 32, 33} };

int (*ptr)[4];

ptr = arr; ,
-! _:- ~-,

/ * P8. 13 Program to print the values and address of elements of a'
D array * /
#include<stdio.h>
:nain ()
{

8.12

216

pth
'11- ').
Pointers 217

2-

. ~.

ith row, On dereferncing (ptr+i), we get base address of ith row, To access the address of jth element
of ith row we can add j to the pointer expression *(ptr+i). So the pointer expression *(ptr+i)+j giv~s'

the address of j!h element of ith row. So the pointer expression *(*(ptr+i)+j) gives the value pf the jth
element of ith row. .

We have studied that the pointer expression *(*(ptr+i)+j) is equivalent to subscript expression ptr[i][j]._
Soif we have a pointer variable containing the base address of 2-D array, then we can access the elements
of array by double subscripting that pointer variable. . .

/*P8.14 Program to print elements of a 2-D array by subscripting a pointer
to an array. variable* /
#include<stdio.h>
main()
{

int i,arr[3] [4]={{10,1l,12,13}, {20,21,22,23}, {30,3l,32,33}};

int (* p tF) [4] ;

ptr=arr;
printf("%u %u %\~\nn,Ptr,ptr+1,ptr+2);

printt'(,,%'u %u %u \nn, *ptr, * (ptr+1) ,*'(ptr+2)) ;
printf("%d %d %d\nn,**ptr,*{*(ptr+1)+2),*(*(ptr+2)+3));
printf("%d %d %d\nn ,ptr[O] [0] ,ptr[l] [2] ,ptr[2] [3]);

}

OutPJIt:

5000 5008 5016

5006 5008 5016

]0 22 33

10 22 33

In a three dimensional array we can access each element by using three subscripts. Let us take a 3
D array-

_int arr[2] [3] [2]={

,Ie thai
ly thai

ltegers

8.13 Pointers And Three Dimensional Arrays

point tl

{5,10},
{6,1l},
{7,12},

},

{

{20,30},
{21,31},
{22,32},

} ;

We can consider a three diinensional array to be an array of 2eD arrays i.e. each element of a 3-D
array is considered to be a 2-D array. The 3-D array arr can be. considered a~ an array consisting of
two elements where each elenlent is a 2-D array. The name of the array arr is a pbinter to the Oth elemen
of the ·array, so arr points to the Oth 2-D array. '

*(arr+i)+j
((arr+i)+j)

((arr+i)+j)+k
((*(arr+i)+j)+k)

ow let us see how we can access any element of a 3d array using pointer notation.

arr Points to Olh 2-D array'

arr+i Points to ilh 2-D array

*(arr+i) Gives base address of ilh 2-D array,
so points to Olh element of ilh 2-D array,
each element of 2-D array is a I-D array,
so it points to Olh I-D array of ith 2-D array
Points to jlh I-D array of ilh 2-D array
Gives base address of jlh I-D array of ilh 2-D array,
so. it points to Olh element of jlh I-D array of ilh 2-D array
Points to klh/element of jlh I-D array of ith 2-D array

Gives the value of klh element of jlh I-D array of ilh 2-D array

So we can see that the pointer expression *(*(*(arr+i)+j)+k) is equivalent to the subscript expression
arr[iJrj][k).

Earlier we have seen that the expression *(arr+i) is equivalent to arr[i] and the expression *(*(arr+i)+j)
is equivalent to arr[iJrj]. So we can say that arr[i] represents the base address of ilh 2-D array and arr[i][j]
represents the represents the base address of the jlh I-D array of ilh 2-D array.

/*P8.1S Program to print the elements of 3-D array using pointer notation*/
#include<stdio.h>
main()
{

int arr[2][3][2]={

{S,lO},
{6, ll},
{7,12},

},

{

{20,30},
{21,31},
{22,32},

} ;

int i,j,k;
for(i=O;i<2;i++)

for(j=O;j<3;j++)
{

for(k=O;k<2;k++)
printf(" %d\t";*(*(*(arr+i)+j)+k));

printf (".. \n") ;

}

Output:

5 10
6 11

\

/

Pointers 219

7 12
20 30
21 31
22 32

The following figure shows how the 3-D array used in the above program is stored in memory.

1st 2-D array

oth 1-Darray of
1st 2-D array

oth 2-D array•

t
oth 1-D array of
oth 2~D array . 1st 1 D f

- array 0

oth 2-D array

oth element of
'-----.toth 1-D array of

oth 2-D array

oth element of
oth I-D array of
1st 2-D array

8.14 Pointers And Functions

/*P8.16 Program to explain call byvalue* /
#include<stdio.h>
main ()
{

int a=5,b=8;

220 C in Depth

printf ("Before calling the function, a and bare %d, %d\n", a, b) ;
value(a,b) ;
printf ("After calling the function, a and bare %d, %d\n", a, b) ;

}

value(int
{

x, int y:),

-

X; +~;

Y.++ ;,

printf("In function changes are %d,%d\n",x,y);
}

Output:

Before calling the function, a and bare 5, 8
In functiqn changes are 6 , ?
After calling the function, a and' bare 5, 8

Here a and b are variables declared·in the function maine) while. x and yare declared in the function
value().These variables re~ide at different address~s in-memory. Whenever the function value() is called,
two variables are created named x and y and are initialized with the values of variables a and b. Tliis
type of parameter passing is called call by value since we are only supplying the values of actual arguments
to the calling function. Any operation performed on variables x ~nd y in the function value(), will not
affect variables a and b.

Before calling the function value() , the value ofa = 5 and b = 8. The values of a and b are copied
into x and y. Sine:: the memory locations of x, y and a, b are different, so when the values of x and
yare incremented, there will be no effect on the values of a and b. Therefore after calling the function,
a and b are same as before calling the function and have the value 5 and 8.

Before execution of function After incrementing x and y
maine) value() maine) value()

a OJ x OJ a OJ x [TI
2000 2012 2000 2012

[]J [I] [I] IT]
b 2002 Y 2014 b 2002 Y 2014

Although C does not use call by reference, but we can, simulate it by passing addresses of variables
as arguments to the function. To accept the addresses inside the function, we'll need pointer variables.
Here is a progr:lm that simulates call by reference by passing addresses of variables a and b.

/ * PR. 17 program to explain call by reference* /
#include<stdio.h>
main()
{

int a=5;
int b=8;
printf ("Before calling the function, Ct and 'b are %d, %d\n" ,a, b) ;
ref(&a,&b) ;

Pointers

printf("After calling the function, a and bare %d,%d\E",a,b);
}

ref (int *p, int *q)
{

(*p)++;
(*q) ++;
printf ("In function changes are %0, %d\n", -p, *q) ;

221

}

Output:

Before calling the function, a and bare 5, 8
In function changes are 6 , 9
After calling the function, a and bare 6, 9

, Here we are passing addresses ofvariables a and b in the function cal!. So the receiving fonnal arguments
in the function declaration should be declared of pointer type. Whenever function ref() is called, two
pointer to int variables, named p ~nd q are created and they are initialized with the addresses of a and,
b. Now if we dereference 'pointers p and q, we will be able to access variables a and b from function
ref().

The maine) accesses the memory locations occupied by variables a and b by writing their names, while
ref() accesses the same memory locations indirectly by writing *p, *q.

Before execution of function After incrementing *p and *q

ref! maine) ref()

, [JJ OJ p 2000a. p a
2000 2000 2012

OJ 2002 IT] 002

b 2002 2014 b 2002 ~

q q 2014

Before calling the function ref(), the value of a = 5 and b = 8. The value of actual arguments are
copied into pointer variables p and q, and here the actual arguments are addresses of variables a and
b. Since p contains address of variable a, so we can access variable a inside ref() by writing *p, similarly
'variable b can be accessed by wr~ting *q.

Now (*p)++ means value at address 2000 (which is 5) is incremented. Similarly (*q)++ means value
at address 2002 (which is 8) is incremented. Now the value of *p = 6 and *q = 9. When we come
back to maine), we see that the values of variable a and b have changed. This is because the function
ref() knew the addresses, of a and b, so it was able to access them indirectly.

So in this way we could simulate call by reference by passing addresses of arguments. This method
is mainly useful when the called function' has to return more than one values to the function.

8.15 Returning More Than One Value From A Function
We have studied that we ,can return only one value from a function through return statement. This
limitation can be overcome by using call by reference. Let us take a simple example to understand this
concept. Suppose we want a function to return the sum, difference and product of two numbers passed

222 C in Depth

to it. If we use return statement then we will have to make three different functions with one return
statement in each. The following program shows how we can return all these values from a single
function.

/*P8.18 Program to show how to return more than one value from a function
using call by reference* /
#include<stdio.h>
main()
{

int. a,b,sum,diff,prod;
a=6 ;
b=4;
func(a,b,&sum,&diff,&prod) ;
printf ("Sum = %d, Difference = %d, Product

}

func (int x, int y, int *ps, lIlt. *pd, int *pp)
{

*ps=X+y;
*pd=x-y;
*pp=x*y;

%d\n",sum,diff,prod) ;

}

Output:

Sum = 10, Difference = 2 , Product = 24 .

In func() variables a and b are passed by value while variables sum, diff, prod are passsed by reference.
The function funcO knows the addresses of variables sum, diff and prod, so it accesses these variables
indirectly using pointers and changes their values.

8.16 Function Returning Pointer
We can have a function that returns a pointer. The syntax of declaration of such type of functien is

type *func(typel, type 2, ...);

For example-

float *fun(int : char); /* This function returns a pointer to float. */

int *f~nc(int , int); /* This function returns a pointer to int. */

.While returning a pointer, make sure that the memory address returned by the pointer will exist even
after the termination of function. For example a function of this form is invalid-
main()
{

int. *ptr;
ptr=func () ;

·int * func (

int x=5;
int *p=&x;

~---

Pointers

return Pi

. 223

Here we are returning a pointer which points to a local variable. We know that a local variable exists
only inside the function. Suppose the variable x is stored at address 2500, so the value of p will be
2500 and this value will be returned by the function func(). As soon as func() terminates, the local
variables x will cease to exist.

The address returned by func() is assigned to pointer variable ptr inside main(), so now ptr will contain
address 2500. When we dereference ptr, we are trying to access the value of a variable that no longer
exists. So never return a pointer that points to a local variable. Now we'll take a program that uses
a function returning pointer.

/.*P8.19 Program to show the use of a function that returns pointer* /
#include<stdio.h>
int *fun(int *p,int n)i

main()

int arr[10] ={l, 2, 3,4,5,6,7,8,9, 10} ,n, *ptri

n=5 i

ptr=fun(arr,n) i

printf ("Value of arr %u, Value of ptr = %u, value of *ptr = %d\n",
arr, ptr, *ptr) i

int * fun (int *p, int n)

p=p+ni
return Pi

}

Output: -

Value of arr = 65104, Value of ptr = 65114, Value of *ptr = 6

8.17 Passing a 1-D Array to a Function
In the previous chapter we had studied that when an array is passed to a function, the changes made
inside the function affect the original array. This is because the function gets access to the original
array. Here is a simple program that verifies this fact.

I*P8.20 Program to show that changes to the array made inside the function
af feet the original array* I
#inc1ude<stdio.h>
main()
{

int i,arr[5]={3,6,2,7,1}j

func(arr) j

printf("Inside main() ")j

for(i=Oii<5ii++)
printf("%d ",arr[i])j

~intf("\n") .
~ ,

C in Depth

func (int a [])
{

int i;
printf("Inside fune(");
for(i=O;i<5;i++)

a[i]=a[i]+2;
printf("%d",a[i]) ;

printf("\n") ;
}

Output:

Inside func() : 5 8 4 9 3

Inside maine) : 5 8 4 9 3

Now after studying about pointers we are in a position to understand what actually happens when an
array is passed to a function. There are three ways of declaring the formal parameter, which has to
receive the array. We can declare it as an unsized or sized array or we can declare it as a pointer.
fune(int a[J)
{

}

fune (int a [5]) ;
{

}

fune(int *a);
{

In all the three cases the compiler reserves space only for a pointer variable inside the function. In the
function call, the array name. is passed without any sub~cript or address operator. Since array name
represents the address of first element of array, hence this address is assigned to the pointer variable
in the ftinction. So inside the function we have a pointer that contains the base address of the array.
In the above program, the argument a is declared as a pointer variable whose base type is int, and it
is initialized with the base address of array arr. We have studied that if we have a pointer variable containing,
the base address of an array, then we can access any array element either by pointer notation or subscript
notation. So inside the function, we can access any ith element of arr by writing *(a+i) or a[i]. Since
we are directly accessing the original array hence all the changes made to the array in the called function
are reflected in the calling function.'

Pointers

func() maine)

225

a arr[O] arr[l] arr[2] arr[3] arr[4]

1 2010 ,
.. I 3 I 6 I 2 I 7 I 1 I

2010 2012 2014 2016 2018
2068 2069

The following program will illustrate the point that we have discussed.

/*P8.21 Program to verify the fact that when an array is passed to· a
function, the· receiving argument is declared as a pointer * /
#include<stdio.h>
main()
{

float f_arr[5]={1.4,2.5,3.7,4.1,5.9}i
int i_arr[5]={1,2,3,4,5}i
char c_arr[5]={ 'a', 'b', 'c', 'd', 'e'}i

printf("Inside main(")i

printf("Size of arr %u\t",sizeof(f_arr))i
printf("Size of arr %u\t",sizeof(i_arr))i
printf("Size of arr %u\n",sizeof(c_arr))i
func(f_arr,i_arr,c_arr) i

}

func(f16at f[J,int *i,char c[5])
{

printf("Inside func() ")i

printf("Size of f %d\t",sizeof(f));
printf("Size of i %d\t",sizeof(i))i
printf ("Size of c %d\n", sizeof (c));

)

Output:

Inside maine) : Size of Carr = 20 Size of i arr = 10 Size of carr = 5

II}side func() : Size of f = 2 Size of i = 2 Size of c = 2

Inside the function func(), f, i, c are declared as pointers, and this is evident by the fact that the
size of each one of them is 2 bytes.

8.18 Passing a 2-D Array to a Function
We have studied in the previous chapter that whenever a multidimensional array is passed to a function,
then it is optional to specify the leftmost dimension but all other dimensions must be specified. So if
we have a 2-D array with 3 row and 4 columns, then the definition of a function that accepts it can
be written in these two ways-
func(int a[3] [4])
{

226 C in Depth

}

func(int a[] [4])
{

}

Any changes made to the array in the function will be reflected in the calling function.

Whenever a 2-D array is passed to a function, the function actually receives a pointer to a I-D array,
where the size of I-D array is equal to the number of columns. For example in the above case the
function receives a pointe~ to an array of 4 integers. So we may write the function definition in this
form also-
func(int (*a) [4])
{

Here a is declared as a pointer to an array of 4 integers, and it is initialized with the base address of
the original 2-D array. Now inside the function we can use either pointer notation -or subscript notation
to access the elements. The following program will make these points clear.

/*P8.22 Program to pass a 2-D array to a function*/
#include<stdio.h>
main()
{

int i,j,arr[3J [4]={

printf("Inside main(
func(arr);
printf ("Contents of
for(i=O;i<3;i++)
{

{ll,12,13,14},
{l5,16,17,18},
{l9,20,2l,22},

} ;

sizeof(arr) %u\n",sizeof(arr»;

array after calling func () are : \n") ;

for(j=O;j<4;j++)
printf("%d ",arr[i] [j]);

printf("\n");

}

func(int (*a) [4J)
{

int i,j;
printf (" Inside func (
printf("Inside func(
for(i=O;i<3;i++)

for(j=O;j<4;j++)
ali] [j]=a[i] [j]+2;

sizeof(a)
sizeof(*a)

%u\n", sizeof ta)} ;
%u\n",sizebf(*a» ;

}

Output:

Inside main() sizeof(arr) = 24

. !

Pointers

Inside func() : sizeof(a) = 2
Inside func() : sizeof(*a) = 8

Contents of array after calling func() are
13 14 15 16
17 18 19 20
21 22 23 24

func() maine)

227

a 5000

~
.... 10 11 12 13
JI""

5008 20 21 22 23
5016 30 31' 32 33

8.19, Array Of Pointers
We can declare an array that contains pointers as its elements. Every element of this array is a pointer
variable that can hold address of any variable of appropriate type. The syntax of declaring an array
of pointers is similar to that of declaring arrays except that an asterisk is placed before the array name.

datatype *arrayname[size];

For example to declare an array of size 10 that contains integer pointers we can write

int *arrp[10];

I"*P8.23 Program for understanding the concept of array of pointers*/
#include<stdio.h>
main ()
{

int *pa[3];
int i,a=5,b=lO,c=15;
pa[O]=&a;
pa[l]=&b;
pa[2]=&c;
for(i=O;i<3;i++)
{

printf ("pa [%dl
printf("*pa[%dl

%u \ t" , i, pa [i 1) ;
= %d\n",i,*pa[i]);

}

Output:

pa[O] = 2012
pa[l] = 2560
pa[2] = 3020

*pa[O] = 5
*pa[l] = 10
*pa[2] = 15

228

a
5

2012

b
10

c

15
3020

C in Depth

Here pa is declared as an array of pointers. Every element of this array is a pointer to an integer. pa[i]
gives the value of the ith element of 'pa' which is an address of any int variable and *pa[i] gives the
value of that int variable.

The array of pointers can also contain addresses of elements of another array.

/*P8.24 Program for understanding array of pointers* /
#include<sidio.h>
main()
{

int i,arr[4]={5,lO,15,20};
int *pa[4];
for(i=O;i<4;i++)

pari] = &arr[i];
for(i=O;i<4;i++)
{

printf ("pa [%d]
printf (" *pa [%d]

= %u \ t" , i, pa [i]) ;
= %d\n",i,*pa[i]);

}

Output:

pa[O] = 1000

pa[l] = 1002

pa[2] = 1004

pa[3] = 1006

*pa[O] = 5

*pa[l] = 10

*pa[2] = 15
*pa[3] = 20

Here 'pa' is declared as array of pointers. Each element of this array contains the address of each element
of array 'arr'.

arr[O] arr[l] arr[2] arr[3]

5 I 10 I 15 I 20

IT r lJ r
pa[O] pa[l] pa[2] pa[3]

I 1000 1002 1004 1006
2500 2502 2504 2506

lM;.

Pointers 229

Now we'll take a 2-D array arr with 3 rows and 4 columns. An array of pointers of size 3 is declared
and each pointer in this array is assigned the address of Oth element of each row of the 2-D array, i.e.
ith element of pa is a pointer to Oth element of ith row of a 2-D array. This can be done as-

int arr[3] [4]={{10;11,12,13}, {20,21,22,23}, {30,31,32,33}};
int *pa[3]; .

for(i=O;i<3;i++)
pa [i] =arr [i] ;

5000

parOl

pa[l]

pa[2]

5000 ~ 10 11 12 13

5008 ~ 20 21 22 23

5016 - ~ 30 31 32 33

Now let us see how we can access the elements of the 2-D array' arr using the array of pointers p~.

parOl is a pointer to the Oth element of Oth I-D array of the arrayarr, similarly pari] will be a pointer
to Oth element of ith I-D array of arr.

Since base type of pointer pari] is int, so if we want the address of jth element of ith I-D array then·
we can add j to the expression pari]. Hence the expression pa[i]+j will give the address of fh element
of i1h I-D array. So the expression *(pa[i]+j) will give the value of the jth element of ith I-D array.

We know that pari] is equivalent to *(pa+i). So the above expression can be written as *(*(pa+i) +j),
and we know that this expression is equivalent to pa[i][j]. So finally we can access the jth element of
ith I-D array by writing pa[i][j].

/"P8.25 program for ·understanding array of pointers*/
#include<stdio.h>
main()
{

. int i, j , arr [3] [4] = { { 10, 11, 12, 13}, {2 0,21,22, 23 }, {3 0, 31,32,33 } } ;
int *pa[3];
for(i=O;i<3;i++)

pa [i] =arr [i] ;,
for(i=O;i<3;i++)
{ for(j=O;j<4;j++)

printf("%d ",pa[i] [j]);
. printf("\n");

}

Output:

10 11 1213
20 21 22 23
30 31 32 33

8.20 void Pointers
We have studied that a pointer should be assigned an address of the same type as mentioned in pointer

230 C in Depth

/*Incorrect */
/*Correct*/

/*Correct '" /
/*Correct */

declaration. For example if we have a pointer to int, then it would be incorrect to assign the address
of a float variable to it. But an exc.eption to this rule is a pointer to void. A pointer to void is a generic
pointer that can point .t<{ any data type. The syntax of declaration of a void pointer is-

void *vpt; .,'

Here void is a keyword and vpt is declared as a pointer of void type. For example
int i = 2, *ip = &i;
float f= 2.3, *fp = &f;

double d;
void *vp;

ip = fp;
vp = Ip;
vp = fp;
vp = &d;

We can assign address of any data typ.e to a void pointer and a void pointer can be" assigned to a pointer
of any data type.

A void pointer can't be dereferenced simply by u,S;ing indirection operator. Before dereferencing, it should'
be type cast to appropriate pointer data type. For example if vp is a void pointer and it holds the address
of an integer variable then we can't derefe~~tice i~ just by writing *vp. We'll have to write *(int *)vp,
.where leftmost asterisk is the indirection, operator and (int *) is used for typecasting. Similarly pointer
arithmetic can't be performed on void pointers without typecasting.

/ *P8. 26 Program to understand the dereferencing of a void pointer* /
#include<stdio.h>
main(
{

int a=3;
float b=3.4,*fp=&b;
void *vp;
vp=&a;
printf("Value of a = %d\n",*(int *)vp);
* (in t *) vp =1 2 ;
printf("Value of a = %d\n",*(int *)vp);
vp=fp;
printf("Value of b %f\n",*(float *)vp);

}

Output:

Value of a = 3
Value of a = 12

Value of b = 3.400000

/ *P8. 27 Program to understand. pointer arithmetic in void pointers * /
#include<stdio.h>
main ()
{

int i;

Pointers 231

float a[4J={l.2,2.5,3.6,4.6};
void *vp;
vp=a;
for(i=O;i<4;i++)
{

p r i n t f ("% . 1 f \ t " , * (f loa t *) vp) ;
(float *)vp~(float *)vp+l /*Can't write vp=vp+l*/

}

printf("\n") ;
}

Output:

1.2 2.5 3.6 4.6

void pointers are generally used to pass pointers to functions which have to perform same operations
on different data types.

8.21 Dynamic Memory Allocation
The hlemory allocation lthat we have done till now was static memory allocation. The memory that could
be used by the program was fixed i.e. we could not increase or decrease the size of memory during
the execution of program. In many applications it is not possible to predict how much memory would
be needed by the program at run time. For' ex~mple if we qeclare an array of integers-

int emp_no[200];,

In an array, it is must to specify the size of array while declaring, so the size of this array will be
fixed during runtime. Now two types of problems may occur. The first case is that the number of
values to be stored is less than the size of array -and hence there is wastage of memory. For example
if we have to store only 50 values in the above array, then space for 150 values(300 bytes) is wasted.
!n second case ou:;;r:'ogram fails if \~/e want to store more values than the size of array, for example
If there IS need ~ store 205 values Il1 the above array. '/. ~

. To overcome these problems we should be able to allocate memory at run time. The process of allocating
,memory at the time of execution is called dynamic memory allocation. The allocation and release of
this memory space can be done with the help of some built-in-functions whose prototypes are found
in alloc.h and stdlib.ll' header files. These functions take memory from a memory area called heap and
release this memory 'whenever not required, so that it can be used again for some other purpose.

Pointers play an impol tant role in dynamic memory allocation because we can access the dynamically

allocated memory only' through pointers.

8.21.1 malloc()

Declaration: void *ma11 'oc(size_t size);

This function is used to a Hocate memory dynamically. The argument size specifies the number of bytes.
to be allocated. The type size_t is defined in stdlib.h as uns,igned int. On success: malloc() returns
a pointer to the first byte ()f allocated memory. The returned pointer is of type void, which can be type
cast to appropriate type o~ f pointer. It is generally used as-

ptr = (datatype *) m3 Hoc (specified size);

re ptr is a pointer of typ 'e datatype, and specified size is the size in bytes required to be reserved
mory. The expression « l11Jtatype *) is used to typecast the pointer returned by malloc(). For example-

\

232

in~ *ptr;

ptr = (int *) malloc (l0);

2500 2501 2502 2503 2504 2505 2506 2507 2508 2509

C in Depth

/l
#j

me

This allocates 10 contiguous bytes of memory space and the address of first byte is stored in the pointer
variable ptr. This space can hold 5 integers. The allocated memory contains garbage value. We can use
sizeof operator to make the program portable and more readable.

ptr = (int *) malloc (5 * sizeof (int));

This allocates the memory space to hold five integer values.

If there is not sufficient memory available in heap then malloc() returns NULL. So we should always
check the value returned by malloc().

ptr = (float *) malloc(lO*sizeof(float));
if (ptr = = NULL)

printf("Sufficient memory not available");

Unlike memory allocated for variables and arrays, -dynamically allocated memory has no name associated I

with it. So it can be accessed only through pointers. We have a pointer which points to the first byte
of the allocated memory and we can access the subsequent bytes using pointer arithmetic.

/*P8.28 Program to understand dynamic ailocation of memory* /
#include~stdio.h>

#include<alloc.h>
main()
{

int *p,n,i;
printf ("Enter the number of integers to be entered ") ;
scanf· ("%d" ,&n) ;
p= (int *) malloc (n* si zeof (int)) ;
if (p==NULL)
{ .

printf ("Memory net available\n");
exi t (1) ;

for(i=O;i<n;i++)

printf ("Enter an integer ") ;
scanf("%d",p+i);

}

for(i=O;i<n;i++)
printf("%d\t",*(p+i)) :

The function malloc() returns a void pointer and we have studied that a void pointer can be assigned
to any type of pointer without typecasting. But we have used typecasting because it is a good practice
to do so and moreover it also ensures compatibility with C++.

Pointers 233

8.21.2 calloc()

Declaration: void *calloc(size_t n, size_t size);

The calloc() function is used to allocate multiple blocks of memory. It is somewhat sImilar to malloc(
) function except for two differences. The first one is that it takes two arguments. The first argument
specifies the number of blocks and the second one specifies the size of each block. For example-

ptr = (int *) calloc (5 , sizeof(int));

This allocates 5 blocks of memory, each block contains 2 bytes and the starting address is stored in
the pointer variable ptr, which is of type int. An equivalent malloc() call would be-

ptr = (int *) malloc (5 * sizeof(int));

Here we have to do the calculation ourselves by multiplying, but calloc() function does the calculation
for us.

The other difference between calloc() and malloc() is that the memory allocated by mallos,(J.con.!a~

garbage value while the memory allocated_l~'y. calloc() is iJliti.a~ed to zero. But this initialization by calloc(
) IS not very reliable, so it is better to explicitly initialize the elen1ents whenever there is need to do
so.

Like malloc(), calloc() also returns NULL if there is not sufficient memory availaple in the heap.

8.21.3 realloc()

Declaration: void *realloc(void *ptr, size_t newsize)

We may want to increase or decrease the memory .allocated by malloc() or calloc(). The function
realloc() is used to change the size of the memory block. It alters the size of the memory block without
losing the old data. This is known as reallocation of memory.

This function takes two arguments, first is a pointer to the block of memory that was previously allocated
by malloc() or calloc() and second one is the new size for that block. For example-

ptr = (int -*) malloc (size); ""

This statement allocates the memory of the specified size and thy starting address of this memory block
is stored in the pointer variable ptr. If we :want to change the size of this memory block, then we can
use realloc() as-

ptr = (int \~) realloc (ptr , newsize);

This statement allocates the memory space of newsize bytes, and the starting address of this memory
block is stored in the pointer variable ptr. The newsize may be smaller or larger than the old size. If
the newsize is larger, then the old data is not lost and the newly allocated bytes are uninitialized. The
starting address contained in ptr may change if there is not sufficient memory at the old address to
store all the bytes consecutively. This function moves the contents of old block into the new block
and the data of the old block is not lost. On failure, realloc() returns NULL.

/ *P8. 29 program to understand the use of realloc () function* /
#include<stdio.h>
#include<alloc.h>
main ()
{

i,nt i, *ptr;
ptr=(int *)malloc(5*sizeof(int));

234

if (ptr==NULL)
{

C in Depth

printf ("Memory not available\n");
exit-(l) ;

}

printf ("Enter 5 integers ") ;
for(i=O;i<5;i++)

scanf("%d ",ptr+i);
ptr= (int *) realloc (ptr, 9 *sizeof (int)); / *Allocate memory for 4 more

integers*/
if (ptr==NULL)
{

printf ("Memory not available\n");
exi t (1) ;

..
f

I

}

printf ("Enter 4 more integers
for(i=5;i<9;i++)

scanf("%d",ptr+i);
for(i=O;i<9;i++)

printf ("%d ", * (ptr+i));

8.21.4 free()

") ;

Declaration: void free(void *p)

The dynamically allocated memory is not automatically released; it will exist till the end of program.
If we have finished working with the memory allocated dynamically, it is our responsibility to release
that memory so that it can be reused. The function free() is used to release the memory space allocated
dynamically. The memory released by free() is made available to the heap again and can be used for
some other purpose. For example-

free (ptr);

Here ptr is a pointer variable that contains the base address of a memory block created by malloc()
or calloc(). Once a memory location is freed it should not be used. We should -not try to free any
memory location that· was not allocated by malloc(), calloc() or realloc().

When the program tenninates all the memory is released automatically by the operating system but it
is a good practice to free whatever has been allocated dynamically. We won't get any errors if we don't
free the dynamically allocated memory, but this would lead to memory leak i.e. memory is slowly leaking
away and can be reused only after the termination of program. For example consider this function
func ()
{

int *ptr;
ptr=(int*)malloc(lO*sizeof(int)} ;

Here we have allocated memory for 10 integers through malloe(), so each time this function is called,
space for 10 integers would be reserved. We know that the local variables vanish when the function
terminates, and since ptr is a local pointer variable so it will be deallocated automatically at the tennination
of function. But the space allocated dynamically is not deallocated automatically, so that space remains

Pointers 235

there and can't be used, leading to memory leaks. We should free the memory space by putting a call
to free() at the end ?f the function.

Since the memory space allocated dynamically is not released after the tern1ination of function, so it
is valid to return a pointer to dynamically allocated memory. For example-
int *func()

int *ptr;
ptr=(int*)ma~loc(10*sizeof(int));

return ptr;

Here we have allocated memory through malloc() in func(), and returned a pointer to this memory.
Now the calling function receives the starting address of this memory, so it can use this memory. Note
that now the call to function free() should be placed in the calling function when it has finished working
with this memory. Here fuiJ.c() is declared as a function returning pointer. Recall that it is not valid
to return address of a local varillble since it vanishes after the termination of function.

8.21.5 Dynamic Arrays

The memory allocated by malloc(), calloc() and realloc() is always made up of contiguous bytes.
Moreover in C there is an equivalence between pointer notation and subscript notation i.e. we can apply
subscripts to a pointer variable. So we can access the dynamically allocated memory through subscript
notation also. We can utilize these features to 'create dynamic arrays whose size can vary during run
time.

Now we'll rewrite the program P8.28 using subscript notation.

/*P8.30 Program to· access dynamically allocated
#include<stdio.h>
#include<alloc.h>
main ()
{

memory as a Id array* /

int *p,n,i;
printf ("Enter the number of integers to be entered ") ;
scanf ("%d" ,&n) ;
p=(int *)malloc(n*sizeof(int));
if (p = = NULL).

printf ("Memory not available\n");
exit (1);

}

for(i=O;i<n;i++)

printf ("Enter an integer ") ;
scanf("%d",&p[i]) ;

}

for(i=O;i<n;.i++)
• printf("%d\t",p[i));

In this way we can simulate a I-D array for which size'is entered at execution time.

236 C in Depth

Now we'll see how to create a dynamically allocated 2-D array. In the next program we have used
. a pointer to an array to dynamically allocate a 2-D array. Here the number of columns is fixed while

the number of rows can be entered at run time.

/*P8.31 Program to dynamically allocate a 2-D array using pointer to an
array*/
#include<stdio.h>
#include<alloc.h>
main ()
{

int i,j,rowsi
int (*a)"[4]i
printf("Enter number of rows ") i

scanf ("%d", &rows) i

a=(int (*) [4])malloc(rows*4*sizeof(int)) i

for(i=Oii<rowsii++J
for(j=Oij<4ij+t)
{

printf("Enter a[%d] [%d]
scanf ("%d", &a [i] [j]) i

j

printf ("The matrix is : \n") i

for(i=Oii<rowsii++)
{

for(j=Oij<4ij++)
printf ("%5d", a [i] [j]) i

printf ("\n") i

}

free(a)i

",i,j)i

Suppose the number of rows entered is 3. The following figure shows how the dynamically.allocated
memory is accessed using pointer to an array. Since there are 3 r0wS and 4 columns so we'll allocate
24 bytes through malloc(), and the address returned by malloc() is assigned to a. The return value
of malloc() is cast appropriately.

a

~2000[±±±J
5000 2008

2016

Now we'll" allocate a 2-D array using array of pointers. Here the number of rows is fixed while the
number of columns can be entered at run time.

/*P8.32 Program to dynamically allocate a 2-D array using array of pointers*/

Pointers

-include<stdio.h>
-include<alloc.h>
ain ()

(

237

int *a[3J,i,j,colsi
printf("Enter number of columns ");
scanf (" %d", &cols) i

/*Initialize each pointer in array by address of dynamically allocated
memory*/
for(i=Oii<3;i++)

a[i]=(int *)malloc(cols*sizeof(int)) i

for(i=Oji<3;i++)
for(j=Oij<colsij++)
(

printf ("Enter value for a [%d] [%d]
scanf ("%d", &a [i] [j]);

}

printf ("The matrix is : \n") i

for(i=Oii<3;i++)
{

for(j=Oij<colsij++)
printf ("%5d", a [i] [j]) i

printf("\n") i

}

for(i=Oii<3ii++)
free(a[i])i

",i,j);

Suppose the number of columns entered is 4. This figure shows how to dynamically allocate a 2-D
array using array of pointers. In this case the rows may not ~e allocated consecutively.

1800

5000

5002

5004

1800 a[O]
2200 a[1] 2570

2570 a[2]1---"~OIJJ

If we want to enter both the number of rows and number of columns at run time, then we can dynamically
allocate the array of pointers also.

/*P8.33 Program to dynamically allocate a 2-D array* /
#include<stdio.h>
tinclude<alloc.h>
main ()
{

238 C in Depth

int **a, i, j, rows, CQIs;

printf ("Enter number of rows and columns ");
scanf("%d%dn,&rows,&cols) ;

/*Allocate a one dimensional array of int pointers* /
a=(int **)malloc(rows*sizeof(int*));

/*Allocate a one dimensional array of integers for each row pointer* /
for(i=O;i<rows;i++)

a[i]=(int *lmalloc(cols*sizeof(int));

for(i=O;i<rows;i++)
for(j=O;j<cols;j++)
(

printf("Enter a[%d] rid]
scanf("%dn,&a[i] [j]);

)

printf ("The matrix is : \nn);
for(i=O;i<rows;i++)

for(j=O;j<cols;j++)
printf ("%Sd n , a [i] [j]);

printf("\nn) ;

for(i~O;i<rows;i++)

free(a[i));
free(a) ;

",i,j);

Suppose the number of rows entered is 3 and the number of columns entered is 4, then the figure for
~

above program would be like this-

a

5000

5002

5004

1800

2200

Here the rows are not contiguous, but we can access each .element with subscnpts. The size of any
row can be easily increased or decreased by realloc().

8.22 Pointers To Functions
The code of a function resides in memory hence every function has an address like all other variables

ers 239

e program. We can get the address ofa function by just writing the function's name without
theses.

r? .34 Program to ilfustrate that every function has an address·· and how
=::::; access that address*/
=~clude<stdio.h>

()

'nt funcI ();
printf ("Address of function main() is
printf ("Address .of function funcI () is
funcI(); /*Function call */

cI ()

printf("India is great\n");

tput:

Address of function maine) is : 657
Address of function func 1(). is : 691
India is great

.22.1 Declaring A Pointer To A Function

%u \n", main} ;
%Ul \n", funcI) ;

'e have seen that functions have addresses, so we can have pointers that can contairi these addresses
hence point to them. The syntax for declaration of a pointer to a function is as-

return type (*ptr_name)(type1, type2,);

.?or example-

float (*fp)(int);
char (*func_p)(float, char);

-ere fp is a pointer that can point to any function that returns a float value and accepts an int value
argl\ment. Similarly funcy is a pointer that can point to functions returning char and accepting float
d char as arguments.

-e can see that this declaration is somewhat similar to the declaration of a function, except that the
inter name is preceded by a * and is enclosed in parentheses. Use of * is obvious since we did this

mile declaring pointers to variables also, but why is the pointer name enclosed in parentheses. Let us
-emove the parentheses and see.

float *fp(int);

ow would you declare a function returning a pointer to float and taking an int value? Well exactly
. the same manner as above. So in this declaration fp is declared to bela function rather than a pointer

d this happened because parentheses have higher precedence than * operator. This is the reason for
enclosing the pointer name inside par~ntheses.

_ ow we have learnt how to declare a pointer to a function, the next step is to assign a function's address
·0 it.

float (*fp)(int , int);
float func(int , int);

/*Declaring a function pointer */
/*Declaring a function*/

240 C in Depth

fp = func; I*Assign address of function func() to pointer fp*1

After th'e above assignment fp contains the address of function func(). J;)eclaring a function is necessary
before using its address anywhere in the program because without d~claration the compiler will not
know about this function and will generate an error.

8.22.2 Calling A Function Through Function Pointer

Now let us see how to invoke a function using a function pointer.

r = func(a, b); I*Calling function in usual way*1

r = (*fp)(a; b); I*Calling function via function pointer *1

The effect and result of calling a function by its name or by a function pointer is exactly the same.

/ *P8 .35 Program to invoke a function using function pointer* /
#include<stdio.h>
main()
{

float
float

(*fp) (int, float);
add(int,float) ,result;

fp=add; /*Assi~n address of function add() to pointer fp*/

/ *Invoking a function directly using function's name* /.
result=add(5,6.6) ;
printf("%f\n~,result);

/ * Invokirig a function indirectly by dereferencing function pointer* /
result=(*fp) (5,6.6);
printf("%f\n",result) ;

}

float. add(int a, float b)
{

return (a+b) ;
}

Output:

11.600000
11.600000

8.22.3 Passing a Function's Address as an Argument to Other Function

We can send the function's address as an argument to other function in the same way as we send other
arguments. To receive the function's address as an argument, a formal parameter of the appropriate
type should be declared. We can then invoke the function sent as an argument by dereferencing the
formal pointer variable. The following program will make this point clear.

/ * P8. 36 Program to send a function's address as an argument to other
function * /
#include<stdio.h>
main ()
{

Pointers

void func(char,void(*fp) (float));
void funl(float);
printf ("Function main () called\n");
func (, a' , funl) ;

241

}

-aid func(char b,void (*fp) (float) /*Address of funl stored in fp*/

printf ("Function func ()
(·*fp\ Is< _5); /*Calling

'oid funl(floC''::. f)

printf ("Function funl (

.I

called\n") ;
funl indirectly

called· \n") ;

using pointer*/

Output:

Function maine) called

Function func() called
Function fun I () called

Here func() is a function which accepts two arguments, a char and a function pointer. This function
pointer can point to any function that accepts a float and returns nothing.

fun 1() is a function that accepts a float and returns nothing hence we can send its address as second
gument to the function func(). The function maine) calls function func() while the function func(

) calls function funIC) indirectly using function pointer. Now we'll write the same program and this
time we'll send a pointer that contains the address of function fun I ().

1* P8.37. Program to pass a pointE;!r containing function's address as an
argument*/
~include<stdio.h>

ain ()

void func(char,void (*fp)(float);
void funl (float) ;
void (*p) (float);
p=funl;
printf ("Function main (called\n") ;
func('a',p);

}

-"oid func(char b,void (*fp) (float»
{

/ *Value of p stored in fp* /

printf ("Function func ()
(*fp) (8.5); /*Calling

}

void funl(float f) .
{

caJ,led\n") ;
funl indirectly using pointer*/

printf ("Function funl () called\n");
}

Output:

Function maine) called

242 C in Depth

Function func() called
Function fun 1() called

8.22.4 Using Arrays Of Function Pointers

-All this stuff may look a bit c.onfusing and you may think why call a function using function pointeJ
when it can l-e easily called using its name. Well in many applications we don't know in advance whicl
function will be called. In that case we can take the addresses of different functions in an amy anc

. then call the appropriate function depending on some index number.

LeCus take a program and understand this concept. In this program we'll add, subtract, multiply OJ
divide two numbers depending on user's choice. For this of course we'll make four different functions
The addresses of these functions will be stored in an array of function pointers.

float add(float, int); /*Dec1aration of functions */
float sub(float, int);
float mul(float,int);
float div(float, int);

float (*fp[4])(float, int); /*Declare an array of function pointers*/

fp[O] = add; /*Assigning address to elements of the array of function pointer*/
fp[l] = sub;
fp[2] = mul;
fp[3] = div;

Instead of the above assignment statements, we could have initialized the array as~

float (*fp[])(float , int) = { 'add, sub, mul, div };

Now we can see that~

(*fp)[O](a, b);
(*fp)[l](a; b);
(*fp)[2](a, b);
(*fp)[3](a, b);

is equivalent to add(a, b);
is equivalent to sub(a, b);
is equivalent to mul(a, b);
is equivalent to div(a, b);

In the following program, the function select() is used to display menu options and to input user's
choice. Depending on the choice of user, corresponding function is cal~ed.

/*P8.38 Program to understand the use of array of function pointers*/
#include<stdio.h>
int select (void) ;
float add(float,int);
float sub(float, int);
float mul(float,int);
float div(float,int);
main ()
{

int i,b;
float a,r;

:r
h
d

,r
;.

_":>ointers

float (*fp[])(float, int)={add,sub,mul,div};
while(l)
{

i=select ();
if(i==5)

exit(l);
printf-("Enter a float and a integer
scanf ("%f %d", &a, &b) ;
r= (* fp [i -1]) (a, b) ;
printf("Result is %f\n",r);

; t select (void)

int choice;

printf("l.Add\n") ;
prirttf("2.Subtract\n") ;
printf("3.Multiply\n") ;
printf("4.Divide\n") ;
printf("5.Exit\n") ;
printf("Enter your choice ");
scanf("%d",&choice) ;
return choice;

=::'oat add (float a, int b)

return a+b;

="loa't. SuO\IJ.oat a,lnt D)

return a-b;

=_oat mul (float a, int b)

return a*b;

oat div(float a,int b)

return alb;

) ;

243

This ~rogra~ could be ,ritten using a ,switch b.ut wri,ting it using function pointers increase~ efficiency.
Funchon pomters are generally used m compilers, mterpreters and database programs.

Here is a review of the pointer declarations used in this chapter-
int *p; /*Pointer to int */
int **p; /*Pointer to pointer to int */
int *p[20]; /* Array of 20 int pointers*/
int (*p)[20]; /* Pointer to an array of 20 integers */
int *f(void); !*Function that returns an int pointer*!

244

int (*fp)(void);

int (*fp[4])(void);

int *(*fp)(void);
float *(*fp)(int, float);

float *(*fp[4])(int, float);

C in Depth

/*Pointer to a function, function returns int */
/*An array of 4 pointers to functions, each function return~

int:"1

/*Pointer to a function, function returns an int pointer */
/*Pointer to a function, function takes two arguments of in
and float type and returns a float pointer*1
/*An array of 4 pointers to functions, each function takes tW(
arguments of int and float type and returns a float pointer*

Exercise

\.

Assume stdio.h is included in all programs.
(l) main ()

{

int a=5, *ptr;
ptr=&a;
printf("Input a number ");
scanf("%d",ptr); /*Suppose the input number is 16*/
printf ("%d %d\n", a, *ptr) ;

(2) main (
{

int *ptr;
printf ("Enter a number :");
scanf("%d",ptr) ;
printf("%d\n",*ptr) ;

(3) main (
{

int arr[5J,i;
for(i=0;i<5;i++)

printf("%u ".arr+i); /*Suppose base address of arr is 5000*
printf("\nEnter 5 numbers\n");
for(i=0;i<5;i++)

scanf("%d",arr+i);
for(i=0;i<5;i++)
printf("%d ",*(arr+i));

(4) main(
{

int i,arr[5]~{25,3L,.< ,40.45},*p;
p=&arr;
for(i=0;i<5;i++)

printf("%d\t%d\t".*(p+i) ,p[i]);

(5) main(

'h

tlS

nt

10

*/

'j

3 0 inters

int i,arr[5]={25,30,35,40,45},*p;
p=&arr [4] ;
for(i=O;i<5;i++)

printf ("%d\t%d\t", * (p-i) ,p [-i]);

~ain(_

int i,arr[5]={25;30,35,40,55},*p;
for(i=O;i<5;i~+)

{

printf("%d ",*arr);
arr++;

(7) main (
{

int i,arr[5]={25,30,35,40,45},*p=arr;
for(i=O;i<5;i++)
{

(*p)++;
printf("%d ",*p);
p++;

(8) main(
{

int i,arr[5]={25,40,55,70,85},*p=arr;

for(i=O;i<5;i++)
printf("%d ",*P++);

printf("\n");

for(i=O;i<5;i++)
printf("%d ",*--p);

printf (" \n") ;

(9) main(
{

int i,arr[5]={25,40,55,70,85},*p=arr;
for(i=O;i<8;i++)

printf("%d ",++*p);
printf("\n");
for(i=O;{~7;i++}

printf("%d " (*p)++);
printf("\n");

245

246

(10)main ()

{ . /
int arr[10J={25,30,35,40,55,60,65,70,85,90},*p;
for(p=&arr[OJ ;p<arr+10;p++)

printf("%d ",*p);

(ll)main(
{

intarr [10 J = { 2 5 , 3 0 , 3 5 , 40 , 5 5 , 6 0 .~ 5 , 7 0 , 8 5 ,9 0 } .. * p ;
for (p=arr+2; p<arr+8; p=p+2) - ~

printf("%d ",*p);

J

(12)main(
{

int i,arr[10J7{25,30,35,40,55,60,65,?O,85,90};
int *p=arr+9;
for(i=O;i<lO;i++)

printf("%d ",*p--);

(13)main() .
{

int arr[10J={25,30,35,40,55,60,65,70,85,90},*p;
for(p=arr+9;p>=arr;p- -)

printf ("%d ", *p);

(14)main(
{

C in Depth

-

int arr[4J={lO,20,30,40};/*Assume base address of arr is 5000*
int x=100,*ptr=arr;
printf("%u%d %d\n",ptr,*ptr,x);
x=*ptr++;
printf("%u%d %d\n",ptr,*ptr,x);
x=*++ptr;
printf ("%u %d %d\n", ptr, *ptr, x) ;
x=++*ptr;
printf ("%u%d %d\n" ,ptr, *ptr,x);
x=(*ptr)++;
printf("%u%d %d\n",ptr,*ptr,x);

(15) main (
{

int x, arr[8J={ll, 22, 33, 44, 55, 66, 77, 88};
x = (arr+2)[3J;
printf ("%d\n", x);

Pointers

_6)main()
{

int arr[8J={11,22,33,44,55,66,77,88};
int *p, *q;
q=arr/2;
p=q*2;
printf (" %d %d", *p, *q) ;

17)main(
{

int arr [6 J = {l, 2,3,4,5,6} ;
int *p=arr;
printf ("Size of p =' %u, Size of arr

18)main(
{

247

%u\n",sizeof(p) ,sizeof(arr);

float' a=5,*p,**pp;
p=&a; /*Assume address of a is 5000*/"
pp=&p; /*Assume address of p is 5520*/
printf ("a %f, p= %u, pp %u\n",a,p,pp) ;

a=a+l;
p=p+l;
pp=pp+l;
printf ("a %f, p= %u, pp %u\n",a,p,.pp);

(l9)int a=5.,b=10;
main()
{

int . x:", 2 0 ,*ptr=&x;
printf("%d ",*ptr);
changel(ptr) ;
printf("%d ",*ptr);
change2 (&ptr) ;
printf("%d\n",*ptr) ;

}

changel (int *p)
{

p=&a;
}

change2(int **pp)
{

*pp=&b;

(20)main(
{

int a=2,b=6;

248

func(a,&b) ;
printf ("a %d, b %d\n", a, b) ;

C in Depth

}

func (int x, int *y)

int temp;
temp=x;
x=*y;
*y=temp;

(21) int *ptr;
main ()
{

func () ;
printf("%d\n",*ptr);

}

func ()
{

int num=10;
ptr=#

(22) main (
{

int a=5,b=8;
func (a, b) ;
printf ("a %d

}

func (int x, int y)

b %d\n" , a, b) ;

int temp;
temp=*(&x) ,*(&x)=*(&y) ,*(&y)=temp;

(23)main(
{

int arr[5] = {I, 2,3,4,5};
int *p=&arr;
printf("p %u,\t",p);
func1(pI;
printf("p %u,\t",p);
func2 (&p);
printf("p %u\n",p);

}

void func1 (int *ptr)
{

ptr++;
}

void func2 (int * *pptr

/*Assume base address of arr is 2000*/

Pointers

(*pptr)++;

(24)main(
{

int arr[lO];
func(arr) ;

}

func(int arlO])
{

intb[lO] ;
int x"=5,y=4;

a=&x;
b=&y;

(25)main(
{

int arr[3] [4]; /*Assume base address of arr is 5000*/

printf("%u\t",arr) ;
printf("%u\t",arr[O]) ;
printf("%u\n" ,'&arr[O] [0]);
printf("%d\t",sizeof(arr) ;
printf("%d\t",sizeof(arr[~]» ;
printf ("%d\n", sizeof (arr[O] [0]»;

(26)main(
{

intarr[3] [4] [5]; /*Assume base address of arr is

printf(:%u\t",arr) ;
printf("%u\t",arr[O]) ;
printf("%u\t",arr[O] [0]);
printf("%u\n",&arr[O] [0] [0]);

printf("%d\t",sizeoflarr» ;
printf("%d\t",sizeoflarr[O]» ;
printf ("%d\t", sizeof larr[O] [0]»;
printf("%d\n",sizeof(arr[O] [0] [0]»;

249

2000*/

(27) main (
{

int arr[lO]
func(.arr+3);

}

func(int a[])
{

{1,2,3,4,5,6,7,8,9,10};

,int i;
for(i=O;a[i] !=8;i++)

Drintfl"%d ",ali]);

250

(28) main (Y
{

int i, j ;

int arr[lO]={3,2,4,1,5,9,8,lO,7,6};

for(i=O;i<lQ;i++)

for(j=O;j<lO-i-l;j++)
if(*(arr+j»*(arr+j+I))

swap(arr+j,arr+j+I);
for(i=O;i<lO;i++)

printf("%d\t-,arr[i]);
printf("\n") ;

}

swap(int *b,int *c)
{

int temp;

temp=*b, *b=*c,*c=temp;

(29)main(

T

C in Depth

int
int
int

i,arr[3] [4]
*pa [3] ;
(*p)[4];

{{lO,1l,12,13}, {20,2I,22,23}, {30,3I,32,33}}:

p=arr;

for(i=O;i<3;i++)
pari] arr[i];

printf("%d %d %d\n",pa[O][O],pa[O][l],pa[2][3]);
printf("%d %0. %d\n",p[O][O],P[O][l],P[2][3]);

(30) int * funcI (void) ;
int *func2 (void) ;
main ()
{

}

int

int *ptrI, *ptr2;
ptrI=funcI () ;
ptr2=func2 () ;

printf("%d %d\n",*ptrI,*ptr2);. ,

* funcI (void)

int a=8, *p=&a;
return p;

int * func2 (void)

*)malloc(sizeof(int)) ;

int *p;
p=(int
*p=9;
return p; ,

Pointers

(31)main()
{

251

in t i , a r r [3] [4] { {l 0 , 11 ,1 2 , 1 3 }, .{ 2 0 , 2 1 , 2 2 , 2 3 }, {3 0 , 3 1 , 3 2 , 3 3 } } ;
int . *p=arr;
for(i=O;i<12;i++)

printf("%d ",p[i]);
printf ("\n U

);

Answers
(1) 16 16
(2) ptr is not initialized, it contains garbage value and may be pointing anywhere in memory, ptr should

be initialized before being used.
(3) 5000 5002 5004 5006 500-8

Enter 5 numbers : 1 2 3 4 5
1 2 3 4 5

The first for loop prints the addresses of the array elements, second for loop inputs the numbers
in the array and the third for loop prints the array elements.

(4) 25 25 30 30 35 35 - 40 40 45 45
(5) 45 45 40. 40 35 35 . 30 30 25 25
(6) Error, since arr is a constant pointer and it can't be changed.
(7) 2631'364146

By (*p)++ we are incrementing the value pointed to by p, and by p++ we are incrementing the
pointer.

(8) 25 40 55 70 85
85 70 55 40 25

(9) 2627282930313233
33 34 35 36 37 38 39

(10) 25 30 35 40 55 60 65 70 85 90
(11) 35 55 65
(12) 90 85 70 65 60 55 40 35 30 25
(13) 90 85 70 65 60 55 40 35 30 25
(14) 5000 10 100

5002 20 10
5004 30 30
5004 31 31
5004 32 31

(J 5) 66
(arr+2)[3] will be interpreted as *(arr+2+3) or as *(arr+5), which is same as arr[5].

(16) Error, since multiplication and division operations are not valid with pointers.
(17) Size of p = 2, Size of arr = 12

• i
i

252 C in Depth

(18) a = 5.000000, p= 5000, pp = 5520

a = 6.000000, p= 5004, pp = 5522

(19) 20 20 10

Since we need' to change the value of ptr we have to send its address, and in the function we
have to receive address of a pointer so we need a pointer to pointer, hence 'the function change2(
) will be able to change. the value of ptr and changel() can't change the value of ptr .

(20) a = 2, b=2

Since the address of b is passed so its value changes, while the value of a does not change because
its value is passed.

(21) In this program we are assigning the address of a local variable num. When the function func(
) terminates, the variable num expires and the memory used by it may be used for some other

, purpose. This program may give 10 as the "Output, but the memory may be overwritten anytime.
(22) a = 5 b = 8

We are passing the values of variables a and b, so their values will not change. Writing *(&x)
is' same as writing x.

(23) p = 2000, P = 2000, P = 2002

The reasoning is same as in question 19.

(24) Error, a = &x is OK since ais declared as a pointer variable, but b = &y not Ok because b is
name of an array, hence a constant pointer.

(25) 5000 5000 5000

24 8 2

(26) 2000 2000 2000 2000

120 40 10 2
(27) 4 '5 6 7

The address of arr[3] is passed to the function. Inside the function, a is declared as a pointer
variable and it gets initialized with the address of arr[3].

(28) 1 2 3 4 5 6 7 8 9 10

The numbers are sorted through bubble sort

(29) 10 1133

10 11 33

pa is an array of 3 pointers, each of base type int, while p is a pointer to an array of 4 integers.

(30) -20 9

It is wrong to return the address of a local variable, but the address of dynamically allocated memOf)'
can be returned.

(31) 10 11 12 13 20 21 22 23 30 31 32 33

Chapter 9

Strings'

~ ere is no separate data type for strings in C. They are treated as arrays of type char. A character
y is a st~~~if~null5hara~ter(.:iQ'). This null char~cter is-ari"escip~' sequence with'

_ CII value O. Strings are generaIJy used to store and manipulate data in text form like words or sentences.

.1 String Constant or String Literal.
_ string constant is a sequence of characters enclosed in double quotes. It is sometimes called a literal.

e double quotes are not a part of the st~ing. Some examples 'of string constants are- ..

'V'

"Taj MahaI"

"2345"

"Subhash Chandra Bose was a great leader"

,,,, (Null string, contains only '\0')

"My age is %d and height is %f\n" (Control string used in printf)

. nenever a string constant is written anywhere in a program, it is stored somewhere in metQory as
- array of characters terminated by a nuU character(''\O'rThe string constant itself becomes a p~inter_____-. i .• . '

the first character. in: the array. For example the. string "Taj MahaI" will be stored in memory as- .

1000 1001 1002 1003 10041005 1006 1007 1008 1009

a J ·'_---1.-1_M--L.I_a--lL..-h a 1 ---1....-_0_

ch character occupies one byte and compiler automatically inserts the null character at the end. The
string constant "Taj MahaI" is actually a pointer to the character 'T'. So whenever a string constant
. used in the program it is replaced by a pointer pointing to the string.

we have a pointer ~ariable of t;pe char .*.~ the~r w~ 'c~n ~ssig~ the address of this string constant
. ~.r '

10 It as- - \, .

char *p-= "Taj maha!";

imilarly whim we write

printf("Subhash Chandra Bose\n'.');

then actually a pointer to characteJ(char *.) is passed to the printf() functio,n.

If identical string constants are used in a program, they will be stored separately at different memory
\

2~, C iii Depth

I . ~.J • - - a r cUll
,.. ::::::.r~t-p141

#include<stdio.h>
main ()
{

printf(~%u\n",Rgood");

printf(R%u\n", Rgood"f;
if ("bad" Rbad")

printf(RSame\n");
else

printf ("Not same\n");.

";~Clont-'rn.-l :;jLL.L.u'::::l c:rnreu

}

Output

174

183

Not same

From the above output we can see that the twa strings "good" are identical but they are stored at different
places. When we compare two identical strings using equality operator then we are actually comparing
the addresses and'not the strings. (Later we'll study a library function strcmp() used to compare strings).

Can you guess what will the expression "software"[4] represent? According to the equivalence of pointer
and subscript notations, this expressi,on 'is equivalent to *("software"+4). We know fhat'''software''
represents the address of first character i.e. 's'. On adding 4 to this address we get the address of
character 'w', and on dereferncing it we gef the character 'w':" -' .

~- ,

In some compilers we can change the string constant by storing its address in a pointer, but it is not
a good practice to'do so and 'the bel1aviour of such a program is undefined. So we should never attempt
to alter the string constants.

We have studied that a string constant gives the address of first character in it, but there is. an exception
to this rule; when the string constant is \lsed as an initializer for a character array then it does not represent

", any address and it is not stored anywhere in memory. For example- ,

char arr[5] = "Deep";

Here the string constant "Deep" is not stored in memory and hence does not represent any address.

Note that the 'b' and "b" are different. 'b' is a character' constant which represents the ASCII value
,of character 'b' while "b" is a string constant which consists of character'b' and null character '\0'.

Inside a string constant, the backslash is considered as an escape character; so if there is a need to
include backslash, character within a string constant then it should be preceded by another backslash.
Ifwe want to include double qoutes inside string constant, then it should also be preceded by a backslash.
For example consider these two printf statements-

printf("good\\bad"); .

printf("I love \"C\" programming");. , .
The output of these 2 statements would be-

C" programming

of a string is not limited to a line only, it can be continued by adding a backslas;l at the
e line. " /

~ , g constants are placed adjacent to each other then the compiler concatenates them llnd places
_ e null character at the end of the; conactenated string. For example these two stri~g c-onstarits

concatenated by the compiler as-

ed ""Fort" ~ "Red Fort"

i

String Variables
.......,,·_...~e a string variable we need to declare a character array with sufficient size to hold all the characters

string' inCluding null character.

- ar str[] = {'N' 'e' 'w' , , 'Y' '0' 'r' 'k' '\o'}·, , , , , , " ,
also initialize it as-

ar str[] = "New York";

'tialization is same as the previous one and in this case the compiler automaticallY inserts the
acter at the end. Note that here the string constant does not represent an address. The array

be stored in memory as-

----,,-N:-::-,--1--::-:-:o-el~w~1~I
str[O] str[l] str[2] str[3]

1000 1001 1002 1003 1004 1005 1006 1007

Y I~o~Ir~1~kI
str[4] str[5] str[6] str[7]

1008

\0 I
str[8]

we have not specified the size of the array, but if we specify it then we should take care that
__" should be .large enough to hold all the characters including the null character,

:?9,2 Program to print characters of a string and address of
-'-3racter. * /
=~clude<stdio.h>

()

each
<0

char str[]="India"i
int ii,
for(i~Oistr[i]!='\O' ii++)
{ ,

printf ("Character = %c\ t" , str [i]) i

printf("Address = %u\n",&str[i])i

tput

Character = I
Character = n
Character = d
Character = i

Address = 1000
Address = 1001
Address = 1002
Address = 1003

-------.

char str [.j ="India";
char *p;
p=str;
while(*pl='\'O')
{

/*P9.3 Program to print the address and characters (")i' the string usin_
pointer*/
#include<stdio.h>
main() / .

{

256

Character = a Address = 1004

arr[O] arr[1]

---:--:71-:--1 n I d
1000 1001 1002 1003 1004

C in Depth

printf ("Character = %c\ t" , *:p) ;
printf("Address=%u\n",p) ;
p++;

\
The output of this progluHl is same as that of previous program.

Here 'p' is pointer variable which holds the base address of array str[]. Incrementing this pointer b.
1 gives the address of next element of character array str[], so on incrementing and dereferencin
this pointer we can print all the elements of the string. This procedure is similar to that applied in oth
arrays, except that here the loop terininates when the character '\0' is encountered which signifies the
end of string.

There is a shortcut way for entering and printing strings, using %s specification in the control strin, .. .
of printf() and scanf(). . "

/ *P9 . 4 Program to input and output a string variable using scanf () *
#include<stdio.h>
main()
{

char name [20] ;
printf("Enter name :")r

scanf("%s",name) ;
printf(" %s ",name);
printf (" %s\n", "Srivastava");

lst run:

Enter a name: Dc:epali

Deepali Srivasta'J'

2nd run:

Enter a name: Suresh Kumar

/

•

Dth Iring .257

Lng

: by
:ing
ther
the

ring

Suresh Srivastava

-:he printf() takes the base a~dress of string and continues to display the characters until it encounters
- e character '\0'.

'ben we enter the string using %s, the null character is automatically stored at the end of array. We
ven't used & sigl} in the scanf() since the name of the array is itself address of the array. In the
d run when we entered a string with space we could not get the required result. This is becaus'e

scanf() stops reading as soon as it encounters a wh{tesp<l;.ce. So for entering string's ~;ith whitespaces
e can use th'e function gets(). It stops reading only when it encounters a newline and replaces' this
ewline by the null character. We have another functio'n puts() which can'output' a string and replaces'
e nuli' character by a newline. . ' , ...

P9.5 Program t,-· understand the use of gets() and puts()/
:~nclude<stdio h>
=ain()

char name[20];
printf("Enter name, ");
gets (name) ;
prihtf ("E'ntered name is. ") ;
puts (name) ;

tput:

Enter name: Suresh Kumar
Entered name is : Suresh Kumar

.3 String Liarary F••cti••s
ere are several library functions used to manipulate strings. The prototypes for these functions are
header file string.h. 'We'll discuss some Qf them below- . ' ,,'

) * I
3.1 strlen()

-:his function returns the length of the string i.e. the number of characters' in the string excluding the
:.mninating null character. It accepts a single argument, which is pointe~ t,o the first character of the'
5:ring. For example strlen("suresh") returns the value 6. Similarly if s1 is an array that contains the

e "deepuli" then strlen(s1) returns the value 7 .

xp9.6 Program to understand the work of strlen () function* /,
=~nclude<stdio.h>

=~nclude<string.h~

=.a in ()

char str[20];
int length;
printf ("Enter the string: \n") ;
scanf ("%s", str) ; ,
length=strlen(str) ;
printf ("Length of' the string is . %d\~", leng,·th) ;

\
\,

258

}

Output:

Enter the string : CinDepth
Length of the string is : 8

Creation Of This Function

Array version~ .
int ~strlen(char str [])

int i=O;
while (st'r[i] !='\O')

i++;
return i;

Pointer version-
int pstrlen (char *str)
{ .

cha"r *start=str;
while(~§~~!=;\O')

str++;
return (str-start);

We can also write the while condition as

while(*str)

because the ASCII value of '\0' is 0 which is considered false in C. .~

C in Depth

9.3.2 strcmp()

This function is used for comparison of two strings. If the two strings mat~h, strcnip(~) ret1.!rns
value 0, otherwise it returns a non-zero value This function compares the strings character by charact
The comparison stops when either the end of string is reached or the corresponding characters in t
two strings are not same. The non-zero value returned on mismatch is the difference of the ASCII vah
of the non-matching characters of the two strings-

strcmp(s1, s2.) returns a value-
< 0 when s1 < s2
= 6 when si '= = . s2

> 0 when sl > s2

Generally we don't use the exact non-zero value returned in case of mismatch. We only need to 1m
its sign to compare the alphabetical positions of the two strings. We can use this function to sort
strings alphabetically. "

/*P9.] Program to understand the work of strcmp() function*/
#include<stdio.h>
#include<string.h>
main ()
{

pth 259

char strl [10], str2 [10];
printf ("Enter the first string ") ;
scanf("%s",strl);
printf ("Enter the second string :");
scanf("%s",str2);
':'f«strcrnp(strl:str2))==0)

printf ("Stririgs c:.~e' sarne\n");
else

printf ("Strings are not sarne\n");

nt:

Enter the first string : Bangalore
Enter the second string : Mangalore
Strings are not same
Creation of this function

y version-
-=-= astrcrnp (char strl [], char str2 [])

int i=Oj
while (strl [i] ! =' \ 0' &&str2 [i] ! =' \ 0' &&strl [i] == str2 [i])

i++;

if(strl[i]==str2[i])
return' 0;

else
return(strl[i]-str2[i]) ;

IS a
:ter.
the
ues

ter version-
-=-::: pstrcrnp(char *strl,char *str2)

while(*strl!='\0'&&*str2!='\0'&&*strl==*str2)
,{

strl++;
str2++;

}

if(*strl==*str2)
return 0;

else
return(*strl-*str2);

lOW

the

.3.3 strcpy()

~ . function is used for copying one string to another string. strcpy(strl, str2) copies str2 to strl.
ere str2 is the source string and strl is destination string. If str2 = "sutesh" then this function copies

resh" into strl. This function takes pointers to two strings as arguments and returns the pointer
first string. "

./

260 C in Depth

/ * P9. 8 Program to understand the work of st:::-cpy () function* /
#include<stdio.h>
#include<string.h>
maine)
{

char strl [10], str2 [10];
printf ("Enter the first string .");

.scanf("%s",str1);

\t\t Second string

\t\t Second string

printf ("Enter tne second
scanf("%s",str2) ;
strcpy(str1,str2);
printf ("First string ; %s
strcpy(str1,"Delhi");
strcpy(str2,"Calcutta");
printf ("First string : %s

string . ") ;

%s\n",str1,str2);

%s\n",str1,str2) ;
}

Output:

Enter the first string : Bombay
Enter the second string : Mumbai . ,/
First string : Mumbai~econd string : Mumbai
First string : Delhi Second string : Calcutta

The programmer should take care that the first string has enough space to hold the second string.

The function calls like strcpy("New", strl) or strcpy("New", "York") are invalid because "New" is a
string constant which is stored in read only memory and so we can't overwrite it.

strcpy("New", strl); /*Invalid*/

strcpy("New", "York"); /*Invalid*/

Creation of this Function

Array version-
char ·*'astrcpy (char strl [], char str2 [])
r

i ,l- ·i=O;
\<T':_le(str2[i] !='\O')

str1 [i] =str2 [i] ;
i++;

}

str1[i]='\0' ;
return str,l;

/ *Copy character by character*.j

Pointer version-
char *pstrcpy(char *str1,char *str2)

while(*str2!='\0')
{

*str1=*str2;

7th 261

strl++;
str2++;

-t:rl='\O' ;
=eturl'l. strl;

write the above function cone ':>ely as
*pstrcpy(char· *strl,char *strl)

- -' i 1 e (* s t r 2 ++ * s t r 1 + +) ;

return s.trl;

"strcat()

ction is used for concatenation of two strings. If first string is "King" and second string is
then after using this function the first string becomes "Kingsize".

srrcat(strl, str2); /*concatenates str2 at the end of strl */

null character from the first string is removeq, and the second, string is added at the end of first
The second string remains unaffected.

function ,takes pointer to two strings as arguments and returns a pointer to the first(concatenated)

s a

-=-=.9 Program to understand
=~=:ude<stdio.h>

=-== ude<string.h>
-- - ()

the work of strcat () function.*/

har strl[20],str2[20];
printf ("Enter the first string ") ;
scanf("%s",strl); ,
printf ("Enter the second string ") ;
scanf("%s",str2) ;
strcatlstrl,str2); .
printt'("First string %s \ tSecond string %s\n", strl, str2) ;
strcat(strl, "_one") j

printf ("Now first string is %s \n", strl) ;

ut:

r the first string : data
the second string : base

t string : database Second string : base
_- w first string is : database_one

reation of this function

_" ay version-
=b.ar *astrcat(char strl[),char str2[])

int i=O,j=O;

/ *Check for the end of first string* /

262 C in Deptf.

while(strl[i] !='\O')
i++;

while(str2[j]!='\0') /*Add second string at the end of first*/
{

strl[i]=str2[j] ;
i++;
j ++;

}

str1[i]='\0' ;
return' str1;

Pointer version-
char *pstrcat(char *str1,char *str2)

whi1e(*str1!='\O')
str1++;

while(*str2!='\O')
{

*str1=*str2;
str1++;
str2++;

*str1='\0' ;
return str1;

}

The function strcat() returns a pointer to the first string, hence it can be nested. The following progra
illustrates this-

/ *P9. 10 Program to understand the work of strcat ()
#inc1ude<stdio.h>
#include<string.h>
main()
(

char str1 [20] ="Subhash ";
char str2 [10] = "Chandra ";
strcat(strcat(str1,str2) ,"Bose");
printf("str1 %s\n",str1);

function.*/

}

Output:

strl - Subhash Chandra Bose

Other string related functions are explained in' the chapter on library functions.

9.4 String Pointers
We can take a char pointer and initialize it with a string constant. For example

char *ptr = "Chennai";

Here ptris a char pointer which points to the first character of the string constant "Chennai" i.e.
contains ,The base address of this string constant.

!epth uing 263

scanf("%s", :;~r);

. ow we'll compare the strings defined as arrays and strings defined as pointers.

char str[] = "Mumbai"; . .

char *ptr ,= "Chennai"; _ '

ese two fo~ms may look similar but there are some differences in them. The initialization itself has
erent meaning in both forms. In the array form, initialization is a short form for-

char str[] = {'M', 'u', 'In', 'b', 'a', 'i', '\O'}; .

ile in pointer form, address of string constant is assigned to the pointer variable.

. ow let us see how they are represented in memory.

1000 100 I 1002 1003 1004 1005 1006

I M I u I m I· b I a I 1 I \0 I
str[O] str[l] str[2] str[3] str[4] str[5] str[6]

.:.

ere str is an array of characters and 7 bytes are reserved for it. Since str is the name of an array
"nee it is a constant pointer which will always point to the first element of array. The elements of
~y are initialized with the characters of the string. Note that we had mentioned before that when'

~ram _ tring constant appears as array initializer, then it does not return an addre~s. ' ,

the second cast:, the string constant "Chennai" is stored somewhere in memory with 8 consecutive
es reserved fOf it. The string constant returns the address of the first character of the string that

"- assigned to the pointer variable ptr. So in this case total 10 bytes are reserved, 2 bytes for the pointer
. table and 8 bytes for the string. '

e main difference is that str is a constant pointer and will always contain address 1000 while ptr
-- a pointer variable and may contain any other address. So string assignments are valid for pointers

'bile they are invalid for strings defined as arrays.

str = "Bombay"; /*Invalid*/·

ptr = "Delhi"; /*Valid*/

e can assign string of any length to ptr. That string constant will be stored somewhere and its address
rill be assigned to ptr.

e can assign a different string to str by scanf (), strcpy or by assigning characters.

ptr strcpy(str, "Bombay");. "

'"

264

or

C in Depth

",

str[O] = 'B'; str[l] = '0'; str[~J = om'; str[1) = 'b'; str[4j = 'a'; str[tT = 'y'; str[tJ = '\0';

This will write the new string at the address 1000, but take care that string size does not exceed the
size of array. .

We have studied earlier that string constants are stored in read only area by some compilers and so
they can't be change.d. So these operations are invalid-

char *ptr = "Bareilly";
ptr[O] = 'D'; /*Invalid*/
scanf("%d", ptr); .. /*Invalid*/
strcpy(ptr, "Bareilly"); -/*Invalid*/

We can't use scanf() with uninitialized pointer since it CJntain garbage value

char *ptr;

scanf("%d", ptr); /*Invalid*/

For this first we should allocate memQry through malloc(), and let this pointer point to that region
of memory.

ptr = (char *)malloc(20);

scanf("%s", ptr); /*Valid*/

/*P9.11*/
#include<stdio.h>
maine)
{

char *str;
str~(char *)malloc(lO);
printf ("Enter a string ") ;
scanf("%s",str) ;
printf ("String is %s\n", str);

}

Output:

Enter a string : Oxford

String is : Oxford

9.5 Array Of Strings Or Two Dimensional Array Of Characters
Strings are character arrays so array of strings means array of character type arrays i.e. a two dimensiona
array of characters.

Suppose we declare and initialize a two-dimensional array of characters as-
char arr [5] [10] {

"white",
"red" I

"green ll
I

'.,

o

'ng

"yellow" ,
"blue"

} ;

initialization is equivalent to
=-ar arr(5] (10] {

{'w', 'h', 'i',t, 'e', '\O'},
{'r','e/,'d/,'\D'},
{'gi, 'r', 'e' I 'e' I 'ni, '\O'},
{'y', 'e' 1'1' 1'1', '0', 'Wi I'\O'},
{ \ b-"' I \ 1 I , \ U I , \ e' I I \ 0 I }

} ;

265

represents Olh string , points to Olb character of Olh string

represents 151 string, points to Olh character of 151 string

represents ilh string, points to Olh character of ilh string
represents jlh character in ilh stringn

ere first subscript of array denotes number of strings in the array and second subscript denotes the
imum length that each string can have. The space reserved for this two-d array is 50 bytes.

ere the name of 2-D array is arr and it gives the base address of the array i.e. it gives the address
first string.

arr[O]

arr[1]

arr[i]
arr[i][j]

- we see that if we want to access individual characters in the string then we use two subscripts
d if we want to access the strings we use a single subscript.

2000

2010

2020

2030·

2040

w h 1 t e \0

r e d \0

g r e e n \0

y e 1 1 0 w \0

b 1 u e \0

2009

2019

2029

2039

2049

's is the internal storage representation of array of strings. 2000 is the base address of the first string.
imilarly, 2010 is the base address of the second string. Here 10 bytes are reserved in memory for

h string. We can see that first string takes only 6 bytes, so 4 bytes are wasted. Similarly 2nd string
es only 4 bytes and 6 bytes are wasted. The total number of bytes occupied by the array is 50 while

- e strings use only 28 bytes so 22 bytes of memory is wasted. Now we'll see through a program
w to print these strings.

*P9.12 Program to print the strings of the two-dimensional 'character

J array* /
:include<stdio.h>
:define N 5
: efine LEN 10
:::ain()

char arr(N] (LEN]={
\\white ll

,

266

. "red",
"green ll

I

"yellow" ,
"blue"

int i;
for(i=O;i<N;i++)
{

C in Depth

printf
printf

}

Output:

String = white
String = red
String = green
String = yellow
String = blue

("String = %s\t",arr[i));
("Address of string = %u \n", arr [i));

Address of string = 2000
Address of string = 20 I0
Address of string = 2020
Address of string...= 2030 .
Address of string = 2040

."

In the above program we have initialized the 2-D array with strings: Suppose we don't initialize it at
the time of declaration and try to assign strings to it afterwards like this-

arr[O] = "white"; /*Invalid*/

arr[1] = "red"; /*Invalid*/

This will give an error 'lvalue required'. Similarly we cannot write

air[O] = arr[1]; /*Invalid*/

If we want to assign values to strings we'll have to use strcpy() or scanf() function.

strcpy(arr[O], "white"); /*Valid*/ <.

scanf'(%s", arr[O]); /*Valid*/

strcpy(arr[O], arr[l]); /*Valid*/

Now we'll take a program to sort the stri~gs alphabetically using the selection sort technique.

I*P9.13 Program to
#inc1ude<stdio.h>
#define N 5
#define LEN 10
main ()
(

sort the array of strings * I

'"

char arr[N) [LEN)={
"white",
"red" I

"green ll
,

"yellow" ,
"blue"

} ;

char temp[10);
int i,j;

pth g

printf ("Before sorting : \n") ;
for(i=O;i<N;i++)

printf ("%s arr[i]);
printf("\n");
for(i=O;i<N;i++)
for(j=i+l;j<N;j++)

if (strcmp(ar::-[i] ,arr[j]»O)
{

strcpy(temp,arr[i]);
strcpi(arrti] ,arr[j]);
strcpy(ar.rU]" temp)

}

printf (~'After . sorting : \n") ;
for(i=O;i<N;i++)

printf ("%s ",arr[i]);

ut:
~efore sorting

267

white red green yellow blue

: at - er sorting :

blue greeQ red_ white yellow

e internal representation of strings after sorting is-

2000

2010

2020

2030

2040

b I u e \0

g r e e n \0

r e d \0

w h 1 t e \0

y e I I 0 w \0

2009

2019

2029

2039

2049

Internal representation after sorting

ere the sorting is not considered very efficient since each time the whole string is being copied.

.6 Array Of Pointers To Strings
, e have already studied about array of pointers. Array of pointers to strings is an array ofchar pointers

which each pointer points to the first character of a 'String i.e. each element of this array contains
e base address of a string. Let us take an example and see how this array can be declared and initialized.

char *arrp [] = {
"white" I

"red Jl
,

"green" I

"yellow" ,
"blue"

}

ere arrp is an array ofpQinters to strings. We have not specified the size ot a:<dY, so the size is determined

268 C in Depth

by the number of initializers. The initializers are string constants. arrp[O] contains the base address 0

string "white", similarly arrp[l] contains the base address of string "red".

Now let us see how these strings are stored in memory-

IOn

100

~
2000

arrp[O] 100 ..

arrp[l] +06 .

arrp[2] B,O..·..

arrp[3] , 116 ..

....+23- ·
arrp[4] L-._

String : white
String: red
String: green
String : yellow
String : blue

Address of string : 100
Address of string : 106
Address of string : 110
Address of string : 116
Address of string : 123

Address of string is stored at : 2000
Address of string is stored' at : 2002
Address of string is stored at : 2004
Address of string is stored at : 2006
Address of string is stored at : 2008

'.",

Here all strings occupy 28 bytes and 10 bytes are occupied by the array of pointers. So the ..total byte:
occupied are 38 bytes. In two-dimensional array, total bytes occupied were 50 bytes for these sam
strings. So we can see here saving of 12 bytes.

In the figure we see that strings are stored in consecutive memory locations. Well it is not necessaI')
they may not be stored consecutively and pointers may point to strings located anywhere. Now let u
take a program and see how to print these strings.

/*P9.14 Program to print the address and string using array of pointer
to. strings* /
#include<stdio.h>
main()
{

int i;
char *arrp [] = {

"white",
"red" I

"green" I

"yellow" ,
"blue"

} ;

)epth g 269

:sso for(i=O;i<5;i++)
{

printf ("String
prin~f -("Addre~s

printf ("Address

%s \ t " , a r rp [i]);
of string %u\t" ,arrp[i]);

of string is stored at %u \n", arrp+i) ;

tput:

String: white

String: red

String: green
String: yellow
String: blue

Address of string : 100

Address of string : 106

Address of string : 110
Address of string : 116
Address of string : 123

Address of string is stored at : 2000

Address of string is stored at : 2002

Address of string is stored at : 2004
Address of string is stored at : 2006
Address of string is stored at : 2008

ead of initializing we could have assigned strings after declaration as-

arrp[O] = "white"; /*Valid*/

arrp[1] = "red"; /*Valid*/

ember this type of assignment was invalid when we used 2-D array. Here it is valid because arrp[O]
- a pointer variable and it can be assigned address of any string.

_-ow let us compare array of strings and array ofpointers to strings. Earlier we had studied the differences
tween strings declared as .pointers and strings declared as arrays. 'Here also we have same differences
t are illustrated by this program.

arr[O]="January";
arrp[O]="January";

/*Invalid*/
/*Valid*/

strings andbetween array ofshow the differences
to strings* /

arr[5] [lO];
*arrp"[5];

char
char

,; P9 . 15 Program to
array of pointers
:"nc1ude<stdio.h>
ain ()>ytes

;ame

sary,
~t us

:ers strcpy(arr[l] , "February");
strcpy!arrp[l] ,"February");

/*Valid*/
/*Invalid, arrp[l] not initialized*/

scan f ("% s" , a r r [2] Y;
scanf("%s",arrp[2]);

/*Valid*/
/*Invalid, arrp[2] not initialized*/.

arrp[3]=(char *)mal1oc(10);
strcpy(arrp[3] ,"March"); /*Valid*/

arrp[4]=(char *)malloc(lO);
scanf("%s",arrp[4]); /*Valid*/

}

We have seen that we can't input strings direct'ly in an array of pointers using scanf(). We have to

270 C in Depth

first allocate memory through malloc(). Here is a program in which we first enter the string and then
allocate memory required for that string. This allocated memory is pointed by an element of array of
pointers.

/*P9.16*/
#include<stdio.h>
#include<string.h>
main ()
{

char *arrp[lOJ,str[20J;
int i;
for(i=O;i<lO;i++)
{

printf ("Enter string %d ", i+l) ;
gets(str);
/ * Now allocate memory sufficient to hold the string* /
arrp[iJ=(char *)malloc(strlen(str)+l);
strcpy(arrp[iJ ,str);

}

for(i=O;i<lO;i++)
printf("%s\t", *(arrp+i));

printf("\n") ;
for(i=O;i<lO;i~+)

free(arrp[i]) ;

If we want to enter the number of strings at run time, then we can allocate the array of pointers
dynamically as we had done in previous chapter program P8.33.

Array of pointers is also useful in grouping together logically related data items. For example we can
take the names of months in an array and then access them by appropriate subscript.

/*P9.17 Program to input a date and print ,the month*/
#include<stdio.h>
main ()
{

int d,m,y;
char *months [] = { "January", "February",

"June" I \\July", "August",

"Nove~ber", "December"};
printf ("Enter date (dd/mm/yy) ") ;
scanf("%d/%d/%d",&d,&m.&y) ;
printf("Month %s\n",months[m-l]);

"March", \\April", "MayJl,

"September", "October",

}

Output:

Enter date: 2/5/2002

Month: May

We cO,uld do this by switch statement also but using array of pointers makes the stuff concise.

The next program sorts the strings represented by array of pointers using selection sort techniqUl

,th 271

len
of

____ Program to

-=.=::'_de<stdio.h>
- -::~e N 5
- -)

sort strings represented by array of pointers*/

_=-ar *arrp[N]={ "white", "red", "green", "yellow", "blue" }i

- i, j i
_~ ar *tempi

::-:::-intf ("Before sorting \n") ;
:: r(i=Oii<N;i++)
_ :::-' nt f ("% s \ t" , arrp [i]) ;
:;;=intf("\n");
- r(i=O;i<N;i++)
- r(j=i+lij<Nij++)

if(strcmp(arrp[i] ,arrp[jl»O)
{

temp=arrp[i] ;
arrp [i] =arrp [j L
arrp[j]=tempi

}

_rintf ("After sorting : \n") i

::or(i=Oii<Nii++)
_rintf("%s\t",arrp[i]) ;
_rintf("\n");

ers ut:

white yellow

;an

sorting -

hite red

sorting -

blue green

green

red

yellow blue

2002

arrp[O] +23- .

arrp[l] 11(}.,..-+-+--+-....,

arrp[2] +06 ·

arrp[3] ·..·+00 +..· ----If----J

....+16 :+--+--'
arrp[4] L------J

---~.~
ue.

272 C in De

Here sorting is efficient since only pointers are being exchanged.

9.7 sprintf()

to strings usi/ *P9 . 19 Program to' convert
sprintf () function* /
#include<stdio.h>
main ()
{

Declaration:

int sprintf (char *str, const char *controlstring [, argument!, argument2, ,]);

This function is same as printf () fu~ction except that instead of sending the formatted output to
screen, it stores the formatted 'output'in a\tring. So with the '~elp of this function we can conv
variables of any data type to string.' A null cnaracter is.appendecYiit the end automatically. This functi
returns the number of characters output to the string excluding thenull character. It is theresponsibil
of the programmer to take the size of string "farge, enough to ~tore all the argumentS1so that....no overfl
occurs.

In the following program we convert integer and float values to strings using sprintf.

integer and float va/lues

char str1[10j;
char str2 [10];
int x=1348;
float y=234',56;
sprintf(str1,"%d H ,x) ;
sprintf(str2,"1.2~·,y) ;
printf("str1 %s,str2 = %s\n H ,str1,str2);

}

Output:

strl 1348, str2 = 234.56

"'1

/ *P9. 20 Program to understand the use of sprintf () function* /
#include<stdio.h>
main ()
{

char str[30];
char name[10]="Suresh H

;

int m1=89,m2=78,m3=80;
float per=(m1+m2+m3)/3.0;
char gr= 'A' ;

sprintf(str,"Result %s %d %d %d If %c\n H ,name,m1,m2,m3,per,g
printf ("The string is : \n H

) ;

puts(str) ;
}

Output:

The string is-

Result - Suresh 89 78 !SO 82.333336 A

)ep

sscanf()

273

-= .21 Program to convert strings to integer aJld float values* /
=-==_ude<stdio.h>
- -- ()

t sscanf (const char *str, const char *controlstring [, address 1, address2, D;
ction is same as the scanf () function except that data is read from a string rather than the

d input. We can read the formatted text from a string and convert it into variables of different
es. In the following program, we have two strings that are converted to integer and float values

to tI: ~ sscanf().
)nve
nctic
,ibm
erflo

ha r s t r 1 [1 0] = " 13 4 8 " ;
har str2 [10·] ="234.56";

int x; (

:: oat y;
sscanf(strl,"%d",&x);
sscanf (s tr2 , "% f" , &y) ;
_ rintf ("Valu'e 'of x = %d, Value of y

ut:

Value of x = 1348, Value of y = 234.56

%.2f\n" ,x,y);

gr)

.::- .22 Program to understand the use of sscanf () function* /
~~ ude<stdio.h>

()

struct{
char name [10] ;
int age;
float sal;

}emp;
char str[30]="Anita 238000.0";
sscanf(str,"%s%d%f"$emp.name,&emp.age,&emp.sal) ;
printf ("liame %s \n" , emp. name) ;
printf("Age %d\n",emp.age);
printf("Salary %.2f\n",emp.sal);

tput:

Name : Anita
Age : 23
Salary : 8000.00

nf() can be used for validating input data. We know how to' put simple validity ched.s on data
h as whether it is in specified range or not, but what if the user starts entering a string where an

eger is required. This type of error is difficult to detect and correct. Here we can use sscanf() to
eck whether a valid integer: value is entered or not. For this we take the input in a string instead
an integer variable and then check each character of that string , and if any character in the string

274 C in Depth

-',
, ':,

is other than a digit , '+' or '~', then we can print the message that input is not a valid integer. If
all the characters input in the string are valid then we can convert that string to an integer variable with
the help of sscanf() and then use that integer variable in our program.

9.9 Some Additional Problems

Problem 1
Write a program to test whether a word is palindrome or not. A palindrome is a word that remains the
same when reversed. For example - radar, madam

/*P9.23 Program to test whether a word is palindrome or not*/
#include<stdio.h>
#include<string.h>
main()
{

char str[lO];
int i=O,j,flag;
printf ("Enter the word ") ;
scanf("%s",str) ;

,j=strlen(str)-l;
while (i<=j)
{

if(str[i]==str[j])
flag=l;

else

flag=O;
break;

i++;
j - -;

}

if (flag==l)
printf ("Word is palindrome\n");

else
printf ("Word is not palindrome\n");

}

Problem 2

\yrite a program to convert a lowercase string into uppercase.
/*P9.24*/ .
#include<stdio.h>
main()
{

char str[lO];
int i=O;
printf ("Enter a string in lowercase ") ;
scanf ("%s", str) ;
while(str[i] !='\O')

'Pth

r. If
Nith

275

str[i]=str[i]-32;
i++;

, the

_ rintf ("The uppercase string is

~."",,"U.lem 3

%s\n",str);

a program to enter any string and print it in reverse order.
:;.25 Program to enter any string and print it in reverse order. * /

-=-: de<stdio.h>
-)

ar str[20];
_ t len;
_ rintf ("Enter any
scanf("%s",str) ;
en=strlen(str)-l;

. hile(len>=O)

t
string ") ;

printf("%c",str[len]);
len- -;

em 4

a program to accept any line and count the number of words in it. ,
=-J.26*/
~_:ude<stdio.h>

- ()

char line[lOO];
int count=O, i=O;
printf ("Enter the line of text ") ;
gets (line) ;
while(line[i] !='\O')
{

if(line[i]==32)
count++;

i++;
}

if(line[i]=='\O')
count++;

printf ("The number of words in line = %d\n", count);

a program to input two strings consisting of maximum 80 characters. Examine both the strings

276 C in De)

". ~
• 'i

and remove all the common characters from both of these strings. Display the resultant string.
/*P9.27*/
#include<stdio.h>
main()
{

char strl [80], str2 [80], str3 [8'0], str4 [80];
int i,j,k,fiag;

printf ("Enter the first string ") ;
scanf ("%s", strl) ;
printf ("Enter the second string ") ;
scanf ("%s", str2) ;
k=O;
for(i=O;i<strlen(strl);i++)
{

flag=O; ,
for(j=0;j<str1en(str2);j++)
{

if(str1[i]==str2[j])
{

flag=l;
break;

}

if (flag! =1)
{

str3 [k] =strl [i] ;
k++;

}

str3[k]='\0';

k=O;
for(i=0;i<str1~n(str2);i++)

{

f1ag=0;
for(j=O;j<strlen(strl);j++)
{

if(str2[i]==strl[j])
{

flag=l;
break;

}

if(flag!=l)
{

str4 [k] =str2 [i] ;
k++;

}

str4[k]='\0' ;

pth g

printf ("The
printf ("The

first string is
second string is

%s\n",str3);
%s\n", str4);

277

\

- e a program to read in a string and output the frequency, of each character, in that string.
P9.28 */

__clude<stdio.h>
="n ()

char str[lO],ch;
int i,j,n,count;
printf ("Enter a string ") ;
scanf("%s",str) ;
n=strlen(str) ;

for(i=O;i<n;i++)
{

ch=str[i] ;
if (ch ! =' '-)
{

count=O;
for(j=O;j<n;j++)
{

if (ch==str [j])
{

count++;
str[j]=' ';

}

printf ("%c occurs %d times\n", ch, count·) ;

e a program to enter a 4 digit number and display it in words.
_9.29*/

=~clude<stdio.h>

()

int n,num,d=O,dig[4];
char *ones [] = {"", "One", "Two",

"Seven", "Eight",
"Three", "Four",

"Nine", \\Ten ll
};

"Five" I \\Six ll
I

char *el [] = { "Ten", "Eleven", "Twelve", "Thirteen", "Fourteen",
"Fifteen", "Six.teen", "Seventeen", "Eighteen",
"Nineteen" };

278

char *tens [] = {
"Seventy" ,

printf ("Enter a 4 digit
scanf("%d",&num) ;
n=num;
do

dig[d]=n%lO;
n/=lQ;
d++;

}while(n>O);

"Twentyil I \\Thirt'1 11
t

"Eighty", "Ninety"
number ");

\'Fortylt I

} ;

"Fifty",

C in-De

"Sixt:

if(d==4)
printf ("%s Thousand", O,:les [dJ.g [3] J);

if(d>=3&&dig[2) !=O)
printf(" %s Hundred ",ones dig[2Jl);

if(d>=2)
{

if (dig[l]==O)
printf("%s\~",ones[dig[OJJ);

else if(dig[l]==l)
printf("%s\n",el[dig[O] j);

else·
printf("%s %s\n",tens[digll]J,ones[dig[OJ));-

}

if (d==1 & & n urn ! =0)
printf ("%s\n", ones [dig [OJ j);

if (num==O)

Printf("Zero\n") ,. \

Probiem 8

Write a function that converts a string to an integer(string contains integer in decimal number syst
/*P9.30*/
#include<stdio.h>
#include<string.h>
main()
{

char - str[20];
printf ('~Enter a number ") ;
scanf("%s",str) ;
printf("%d\n",str_to_i(str));

}

int str_to_i (char str [j)

int i,num=O;
if (str[0 1== '- ')

- i=l;
else

i=O;

Dep

Kty

;tern

g

while(i<strlen(str))
num=nurn*10+(str[i++]-48);

:.r(str[O]=='-')
return -num;

else
return num;

blem 9

~e functions to convert integer and float values to string.
?..-.3l*1

~-=clude<stdio.h>

~-~c ude<string.h>
- i_to..:...str(int num,char str[],int base);

_':'d r_to_str (float num, char str []) ;
=..: ()

char str1 [10], str2 [10], str3 [10], str4[lO], str5 [10J;
intx=45 ;
float y=58.5;
i_to_str(x,str1,16) ;puts(strlJ;
i_to_str(x,str2,10) ;puts(str2);
i_to_str(x,str3,8) ;puts(str3);
i_to_str(x,str4,2) ;puts(str4);
f_to_str(y,str5) ;puts(str5);

::':'d i_to_str (int num, char str [] ,int b)

int i=o, temp, rem, j ;
while(num>O)
{

rem=num%b;
num/=b;
if(rem>9 && rem<16)

s t r [i ++] = rem- 1 0 + ' A' ;
else

str[i++]=rem+'O';
}

str[i]='\O' ;
for (i=O, j =strlen (str) -1; i<j; i++, j - -) 1*Reverse the string* 1
{

temp=str[i];
str[i]=str[j] ;
str[j]=j:emp;

':'d f_to_str (float num, char str [])

int i,k;

_ 9

Exercise

printf("%cH,name[i)) ;
i++;

(4) #inc1ude<string.h>
main()
{

string H) ;

is %s\n H, str) ;

a

f·,

char *str;
printf("Enter
gets(str) ;
printf("String

C in Dept!

float
i=num;
i_to_str(i,str,lO) ;
str[strlen(str)+l]='\O';

. str[strlen(str») ='.';
f=num-i;
k=f*lOOOO; /*we'll get the float value upto 4 decimal paces*/
i_to_str(k, str+str1en(str) ,10);

char *strl="Good H, *str2=HMorning H;
strcat(strl,str2) ;
printf("%s\nH,strl);

int i=O;
char name [l 0] = { 'M' , '0' , 'h' , ' i ' , 'n' , 'i' , ' \ 0' } ;
whi1e(name[i)
{

Assume that stdio.h is included in all programs.
(1) main()

{

(3) #inc1ude<string.h>
. main()

{

Output:

2D
45

55

101101

58.5000

(2) main (

280

·th

char str [10] = "How" ;
strcat (str., '?') ;

printf("%s\n",str);

in ()

char str[]="vijaynagar";
str=str+5;
printf("%s\n",str);

}

ain(

char str[]="Vijaynagar";
func(str+5) ;

}

::unc(char *str)
{

printf("%s\n",str) ;

ain(
{

c ha r s t r[] = {7 0 , 9 7 , 1 0 5 , 11 6 , 1 0 4 , 0 } ;
printf("%s\n",str);

_ main (
{

char str [] = "painstaking" ;
char *p=str+5;
printf("%c\t",*p) ;
printf("%s\n",p) ;

}

main()
{

printf("%c\t", "Determination"[2]) ;
printf("%c\t",*("Determination"+2)) ;
printf("%s\t", "Determination"+2) ;
printf("Determination"+2) ;
printf ("\t");
printf("Determination"+str1en("Deepali")) ;
printf("\t");
printf("Determination"+sizeof("Deepa1i")) ;
printf("\n") ;

•) main (
{

char str [] = "Lucknow" ;

281

282 C in Dep;

char *p=str;
p++;
p=p+2;
p[3]='t' ;
printf("%s

(ll)#include<string.h~

main()
{

%s\n", str,p);

char
char

*p[]={"Orange", "Yellow", "Sky" "Blue" , "Black"};
arr[lOJ;

printf("%s %s %s\n",p[l],p[2],p[3]);
strcpy(arr, "Luck". "now");
printf("%s\n",arr);

(12)#include<string.h>
main ()
(

char strl[IS]="Good ";
char str2 [] ~"Evening";
strcpy(strl+strlen(str~),str2);

printfl"%s\n",strl) ;

(13) main (
(

char name [15] = "Vikramadi tya;' ;
int i=O;
while(name[i])
{

p r i n t f (" %c ", name [i)) ;
i=i+3;

}

(14) main (
(

char str(10] (20);
int i;
for(i=O;i<lO;i++)

scanf("%s",str[i]);
for(i=0;i<10;i++)

printf("%s",str[i]);

(lS)main(
(

char *str[lO);
int i;
for(i=O;i<lO;i++)

)ept;'

scanf("%s",str[i]) ;
for(i=O;i<lO;i++)

printf("%s",str[i]);
}

- -include<string.h>
har *combiI].e(char *arrl, char *arr2);
ain ()

char *str=combine ("Suresh" , "Kumar") ;
puts(str) ;

- ar *combine(char *arrl,char *arr2)

char str[80];
int x,y, i, j;
x=strlen(arrl) ;
y=strlen(arr2) ;
strcpy(str,arrl) ;
for(i=x,j=O;j<x+y;i++,j++)

str[i]=arr2[j];
str[i]='\O' ;
return\str) ;

- :=ain()

char *str="Deepali Srivastava";
int i=O;
while(str[++i]);

printf (%d\n", i) ;

::a in ()

int dl,ml,yl;
char date[11]="24/051l973";
date[2]=date[5]='\O' ;
sscanf(date,"%d",&dl) ;
sscanf(date+3,"%d",&ml) ;
sscanf(date+6,"%d",&yl) ;
date[2J'=date[5]='/' ;
printf("dl=%d,ml=%d,yl=%d\n",dl,ml,yl) ;
printf("dat~ %s\n"~date);

;; ain ()
{

char *str="doubtful";
func(str);

283

284 C in Dep

func (char *p)
{

if (*p ! = ' f ')
{

printf("%c",*p) ;
func(++p);

(20)main(
{

ch-ar *ptr;
ptr="My name is %s and age is %d\n";
printf(ptr,"Ranju",30);

(21)void funcl(char arr[]);
void func2 (char a []);
main ()
{

int i;
char arr [5] ;
puts(arr);
funcl (arr) ;
puts(arr);
func2(arr);
puts (arr) ;

}

void funcl (char x [])
{

x="Jack";
puts (x) ;

}

void func2 (char
{

x [])

x [0] = 'J' ,x [1] = \ i ' ,x [2] = \ I ',x [3] = \ I ' ',x [4] = \ \0 ' ;
puts (x) ;

} ,

(22) main (
{

char *ptr;
ptr= "Every saint has a past, \ '
Every sinner has a future. \n";
printf("Giving ""is ""Iiving.""\n");
printf (ptr) ;

Programming Exercise
1. Write a function for performing case insensitive string comparison.

~pth 285

o s

y zw xu v

Manish - Lucknow

Divya -Kanpur

Kriti-Renusagar

Write a program to accept a line of text and display the number of consonants and spaces in that
line of text.
Write a function that searches for a character in the string and returns the number of occurrences
of that character in the string. It should take two arguments, first a string and then a character.
Write a function which replaces all the occurrences of a character from a string with another
character. It should take three arguments, a string and two characters.
Write a function which deletes all the occurrences of a character from a string. It should take
two arguments, a string and a character.
Write a program to accept a line of text and a word. Display the number of occurrences of that
word in the text.

Write a function to remove all the leading and trailing blanks from a string.

Write a program to input text and replace all the occurrences of word "Calcutta" by "Kolkata"
in that text.

Write a program to accept a line of text and print that text after removing all sI?aces and delimiters.
Write a program to accept any 10 names and display those names after sorting them alphabetically
in descending order.

Write a program to encode text and to decode the encoded text.

(i) Perform the encoding so that every character is replaced by its next character. For example
replace a by b, b by c and so on. Replace z by a.

Plain texf: program

Encoded text : qsphsbn

Decoded text : program

(ii) Perform the encoding according to these replacements

abcdefghij kllrtnop q r s

mnkghdt abwvup rqc z J Xl eyf
Plain text: program
Encoded text :cjqtjmp

Decoded text :program

Input a string and change it so that the characters are placed in alphabetical order. For example
the string "motivate" should be changed to "aeimotv"

Write a program to abbreviate input text. For example if the input is "World Health Organization",
then the output should be WHO.

Write a function to extract a substring from a string. Assume that the substring stallS at the ith
character and is n characters long.

Write a program to input a number from 0 to 6 and print the corresponding day using array of
pointers. For example if 0 is entered then print Sunday, if 1 is entered print Monday.

Consider this list of names of persons and cities

Reeta·. Kanpur Alok - Rampur
Reena - Rampur Suresh - Lucknow

Deepali - Lucknow Saumya - Rampur

Write a program such that if a name of a person is entered then the city is displayed and if a city
is entered then names. of all people living in that city are displayed.
Hint: store the names of cities and persons in separate array of pointers to strings ..

286 C ill Dept

17. Write a program to input 5 lines of text and then store them as separate strings using array (
pointers to strings.

Answers
(1) Mohini
(2) Pointer str contains a garbage value, it ~hould be initialized before reading any string throug

gets().
(3) The memory to which strl points is not writable, since string constant "Good" is stored in rea

only memory by some compilers. We should use a character array str[15].
(4) '?' represents a character, and strcat concatenates only strings, so we should write "?".

. (5) Error: since name of array is constant pointer and can't be altered.

(6) nagar
(7) Faith

Here the integer values are assumed to be ~SCII equivalents of characters and these charactet
get stored in the array: .

(8) t taking
(9) Itt termination \ termination nation ation

. I

(10) Lucknot knot
(11) Yellow SkyBlue Black

Lucknow
(12) Good Evening
(13)Vrat

(14) The first loop will input 10 strings and the next for loop. will display them.
(15) The pointers in the array of pointers are not initialized; so it is not valid to input strings.
(16) str is a local array declared inside combine() and hence it exists only inside this function, so :

is wrong to return its address to any other function. Sometimes this program may give desire,
output but the memory occupied by array str can be overwritten anytime. If we want this prograr
to work properly then" we can declare the array str in main(), and send it tocobmine().

(17) 18
(18) d1 = 24, m1 = 5, y1 = 11' 3

date = 24/05/1973
(19) doubt
(20) My name is Ranju and age is 30
(21) --

Jack

Jill
Jill
The two dotted lines represent garbage value. If an array is passed as an argument, then inside
the function we have a pointer to array and of course this is a local pointer variable. It
funcl(), x is declared as pointer to char and initialized with the address of array arr. Inside thi:
function, the address of string constant "Jack" is assigned to pointer x. So now x has lost thl
address of array arr and it has nothing to do with this array.

of 0 after call to func1(), the array arr still contains garbage value. Now func2() is called and
array arr is sent to it. Here also x is declared as pointer to char and initialized with the address
of arr, but inside this function we have not changed the address of x.
Giving is living.
- very saint has a past, Every sinner has a future.

Igh Adjacent string constants are concatenated. Any string constant can be continued on next line by
utting a '\'.

ead

:ers

) it
red
'am

ide
In

this
the

Chapter 10

Stractare find Onion

Array is a collection of same type of elements but in many real life applications we may need to grc
different types of logically related data. For ~mple if we want to create a record of a person t
contains name, age and height of that person, then we can't use array because all the three data eleme
are of different types.

iecord

t-~ 1
name age height
(string) (int) (int)

To store these related fields of different data types we can use a structure, which is capable of stor
heterogeneous data. Oata of different types can be grouped together under a single name using structul
The data elements of a structure are referred to as members.

10.1 Defining a Structure
Definition of a structure creates a template or format that describes the characteristics of its memh
All the variables that would be declared of this structure type, will take the form of this template..
general syntax of a structure definition is-

stru.ct tagname {
data type memberl;
data type member2;

datatype memberN;
} ;

Here struct is a keyword, which tells the compiler that a structure is being defined. memberl, memh
...............memberN are known as members of the structure and are declared inside curlybral
There should be a semicolon at the end of the curly braces. These members can be of any data t
like int, char, float, array, pointers or another structure type. tagname is the name of the structure
it is used further in the program to declare variables of this structure type.

Definition of a structure provides one more data type in addition to the built in data types. We can dec
variables of this new data type that will have the format of the defined structure. It is importan

student{
char name [20] ;
int rollno;
f loa t marks;

289

} ;

dent is the structure tag and there are three members of this structure viz name, rollno and
Structure template can be defined globally or locally i.e. it can be placed before all functions
Iogram or it can be locally present in a function. If the template is global then it can be used

functions while if it is local then only the function containing it can use it.·~" " .. - - - ."

Declaring Structure Variables

definition of a structure template does not reserve any space in memory for the members;
reserved only when actual variables of this structure type are declared. Although the syntax

laration of members inside the template is identical to the syntax we use in declaring variables
members are not variables, they don't have any existence until they are attached with a structure

:=::!b'le. The member names inside a structure should be different from one another but these names
similar to any other variable name declared outside the structure. The member names of two

=~TI't structures may also be same.

take an example of defining a structure template.

2':zz:rue and Union

roup
that

lents

)ring
ures

'ng a structure we have only created a.format, the actual use of structures will be when we
variables based on this format. We can declare structure variables in two ways-

. ith structure definition
-sing the structure tag

1 With Structure Definition

bers
The

_ t student{
char name [20] ;
int rollno;
f loa t marks;
}stul,stu2,stu3;

srul, stu2 and stu3are variables oftype struct student. When we declare a variable while defining
cture template, the tagname is optional. So we can also declare them as-

~ an

aces
type

berl.

chari name [20 1 ;
int rollno;
float marks;
}stul,stu2,stu3;

declare variables in this way, then we'll not be able to declare other variables of this structure
ywhere else in the program nor can we send these structure variables to functions. Ifa need

to declare a variable of thi,stype in the program then we'll have to write the whole template again.
ihough the tagname is optional it is always better to specify a tagname for the structure.

.2 Using Structure Tag

:clare also declare structure variables using structure tag. This can be written as~'

.nt t _ct: student {

290 C in' Dept

char name [20] ;
int rollno;
float marks;

} ;

struct student stul, stu2;
struct student stu3;

Here stu1, stu2 and stu3 are structure variables that are declared using the structure tag student.

Declaring a structure variable reserves space in memory. Each structure variable declared to be of ty
struct student has three members viz. name, rollno and marks. The compiler will reserve space:
each variable sufficient to hold all the members. For example each variable of type struct student \1

occupy 26 (20+2+4) bytes.

10.3 Initialization Of Structure Variables
The syntax of initializing structure variables is similar to that of arrays. All the values are given in cu
braces and the number, order' and type Qf these values should be same as in the structure tempI
definition. The initializing values can only be constant expressions.

struct stu?ent {
char name [2'0] ;
int rollno;
float marks;

}stul={"Mary H,25,98};
struct student stu2={ "John H, 24, 67. 5};

Here value of members of stu1 will be "Mary" for name, 25 for rollno, 98 for marks. The value:
members of stu2 will be "John" f~r name, 24 for rollno, 67.5 for marks.

We cannot initialize members while defining the structure.
struct student {

char name [20] ;
int rollno;
floa. t marks=99; / * Inval id * /

}stu;

This is invalid because there is no variable called marks, and no memory is allocated for struf
definition.

If the number ofinitializers is less than the number of members then the remaining members are initial
with zero. For example if we have this initialization-

struct student stu I = {"Mary"};

Here the members rollno and marks of stul will be initialized to zero. This is equivalent to the initializa

struct student stul = {"Mary", 0, O}; f
Some old compilers permit initialization of only global and static structures, but there is no such restri
in ANSI standard compilers. I

Accessing Members of a Structure10.4
For accessing any member of a structure variable, we use the dot (.) operator which is also
as the period or membership operator. The format for accessing a structure member is-

structvariable.member

~ptlr re and Union 291

_ on the left side of the dot there should be a variable of structure type and on right hand side there
d be the name ofa member of that structure. For example consider the following structure-

:.__ct st:udent {

aame of stu I is given by - stu l.name
rollno of stu I is given by - stu l.rollno

arks of stul is given by - stul.marks
ame of stu2 is given by - stu2.name

rollno of stu2 is given by - stu2.rollno
arks of stu2 is given by - _stu2.marks

It.

type
~D

w

url.
lla -

t student

char name [20] ;
int rollno;
float marks;

} ;

stul,stu2;

use stul.name , stu1.marks, stu2.marks etc like any other ordinary variables in the program.
_ can be read, displayed, processed, assigned values or can be send to functions as arguments.

't use student.name or student.rollno because student is not a structure variable, it is a structure

:=: . 1 Program to display the values of structure members * /
-=.:::'ude<stdio. h>
-=.:::'ude<string.h>
___;::t student{

s

char name [20] ;
int rollno;
float marks;

} ;

-"-()

name, rollno and marks for stu3 : ");
%f",stu3.name,&stu3.rollno,&stu3.~~rks);

\
%s %d %.2f\n",stul.name,stul.roJUno,stul.marks);
%s %d %. 2f\n", stu2. name, stu2. rOlino, stu2 .marks) ;

. %s %d %. 2f\n", stu3 .name, stu3. rollno, stu3 .marks);

tur

1Z

lOll-

:ti

o

struct student stul= {"Mary" ,-2:5,68) ;
struct student stu2, stu3;
strcpy(stu2.name, "John");
stu2.rollno=26;
stu2.marks=98;
printf ("Enter
scanf("%s %d
printf("stul
printf("stu2
printf("stu3

ut:

;er name, rollno and marks for stu3 Tom 27 79.5
stul : Mary 25 68.00
stu2 John 26 98.00'
stu3 : Tom 27 79.50

,ach
,;essed

the dot

292 C in De)

In this program we have declared three variables oftype struct student. The first variable stu1 has hi
initialized, the members of second variable stu2 are given values using separate statements and the val
for third variable stu3 are input by the user. Note that since stu2.name is an array so we can't ass
a string to it using assignment operator, hence we have used the strcpy() function.

The dot operator is one of the highest precedence operators, its associativity is from left to right. Hel
it will take precedence over all other unary, relational, logical, arithmetic and assignment operators.
in an expression like ++stu.marks, first stu.marks will be accessed and then its value will be increa
by 1.

1Q.5 Assignment of Strlicture Variables
We can assign values of a structure variable to another structure variable, if both variables are defil
of the same structure type. For example-

/ *P10. 2 Program to assign a structure variables to another structu
variable*/
struct student {

char name [20] ;
int .rollno;
float marks;

} ;

main ()
{

struct student
struct student
stu2=stul;
printf("stul
printf("stu2

stul={"Oliver",12,98};
stu2;

%s %d %. 2f\n", stul.name, stul. rollno, stul.marks) ;
%s %d %. 2f\n", stu2 .name, stu2. rollno, stu2 .marks) ;

}

Output:

stu1 : Oliver 12 98.00

stu2 : Oliver 12 98.00

Unary, relational, arithmetic, bitwise operators are not allowed with structure variables. We can use thl
variables with the members provided the member is not a structure itself.

10.6 Storage of Structures in Memory
The members of structures are stored in consecutive memory locations.

/*P10.3 Program to show that members of structure are stored in consecuti
memory locations * /
#include<stdio.h>
main ()
{

. struct student {
char name [5] ;
int rollno;
float marks;

}stu;

lept and Union 293

be ~=':'ntf ("Address of name = %u \n" , stu. name) ;
alu :;.=':'ntf("Address of rollno = %u\n",&stu.rollno);
ssi -=':'ntf("Address of marks = %u\n" ,&stu.marks);

need to find out the size of structure in some situations like reading or writing to files. To
... the size of a structure by sizeof operator, we can either use the structure variable name or

._ ame with the struct keyword. For example-
1:of(struct student)'
eof(stu1)

_IZeof(stu2)

- stul and stu2 are variables of type struct student, then all the three expressions will give the
:esult.

- structures may be different on different machines. This is because of certain memory alignment
'ons on some computers. For example some machines store integers only at even addresses and

only at addresses which are multiple of 4. This is called aligning of data. Consider this structure-

ess of stu.name = 65514
es of stu.rollno = 65519

_- dress of stu.marks = 65521

ut may be different on different machines, and the number of bytes occupied may also vary
~~;e of the reasons explained in next section, but the main point to be noted, here is that structure
==-=,ers are stored in consecutive memory locations. .

Size of Structure

fin

.ure

:as

[en ~

s.

_ ar ch;
- t num;

hese

iVl;

--;

ere suppose var.ch is stored at an even address, then' the next byte will be left unused since
't be stored at an odd address. So instead of occupying 3 bytes this structure variable will occupy

with a hole of unused byte in between. Due to these reasons, size of whole structure may not
to the sum of sizes of its members. So it is always better to find the size of structure variable

g sizeof operator rather than using the sum of sizes of its members.

, Array of Structures
ow that array is a collection of dements of same datatype. We can declare array of structures
each element of array is of structure type. Array of structures can be declared as-

struct student stu[10];

stu is an array of lO elements, each of which is a structure of type struct student, means each
ent of stu has 3 members, which are name, rollno and marks. These structures can be accessed

_ gh subscript notation. To access the individual members of these structures we'll use the dot
tor as usual.

294

stu[O].name
stu[1].name .
stu[2] .name

stu[9].name

stu[O] .rollno
stu[1] .rollno
stu[2] .rollno

stu[9].rollno

stu[O].marks
stu[1].marks
stu[2] .marks

stu[9].marks

C in}Jej

-"1

All the structures of an array are stored in consecutive memory locations.
/ *P10. 4 Program to understand array of structures * /
#inc1ude<stdio.h>
struct student {

char name [20] i

int ro11noi
f loa t marks;

} ;

main ()
{

int i;
struct student stuarr [10] ;
for(i=0;i<10ii++)
{

printf ("Enter name, ro1lno and marks ") i

scanf("%s%d%f",stuarr[i] .name,&stuarr[i] .rollno,
&~tuarr[i] .marks);
}

for(i=Oii<10;i++)
printf("%s %d %f \n",stuarr[i] .name,stuarr[i] .rollno,

stuarr[i] .marks);
}

In some compilers the above program may not work correctly and will give the message 'iloating p
formats not linked" at run time. This problem occurs because the floating point formats (for sea
and other related functions) are not always linked, to reduce the size of executable file. The solu
to this problem will be given in the manual of your compiler. Fot example, Borland C suggests
inclusion of these two lines to solve this problem.

extern unsigned _floatconvert;

#pragma extref _floatconvert

Another way to avoid the above problem is to insert a definition of a function like this

. void. link()

{ float x, *ptr = &x; }

The array of structures may be initialized using the same syntax as in arrays. For example
. struct student stuarr [3] = {

{"Mary",12,98.5},
{"John",11,97},
{"Tom",12,89.5}

} i \

The inner pairs of braces are optional if all the initializers. are present in the list.

eptt - re and Union

Arrays Within Structures

295

Din:
nil
tiofi
the

have an array as a member of structure. In structure student, we have taken the member name
array of characters. Now we'll declare another array inside the structure student.

-= t student {
char name [20] ;
int rollno;;
int submarks [4] ;

} ;

::rray subrnarks denotes the marks of students in 4 subjects.

is a variable of type struct student then- ,

.submarks[O] - Denotes the marks of the student in fir~t'subject

.submarks[l] - Denotes the marks in second subject. "~'"

.name[O] - Denotes the first character of the name member.

.name[4] - Denotes the fifth character of the name member.

[10] is an array of type struct student then-

arr[O].submarks[O] - Denotes the marks of first student in first subject

arr[4].submarks[3] -Denotes the marks- of fifth student in fourth subject.

smarr[O].name[O] - Denotes the first character of name member of first student

rr[5].name[7] - Denotes the eighth character of name member of sixth student

-=:':.5 Program to understand arrays wi thin structures * I
--:. de<stdio.h>

student {
char name [20] ;
int rollno;
int submarks [4] ;

} ;

- i I j j

;:;:::ruct student stuarr [3] ;
= r(i=Oji<3;i++)

printf ("Enter data for student %d\n", i+l);
printf ("Enter name ") ;
scanf("%s",stuarr[i] .name);
printf ("Enter roll number ") ;
scanf (" %d", &stuarr [i] . rollno) ;
for(j=O;j<4;j++)
{

printf ("Enter marks for subj ect %d
scanf("%d",&stuarr[i] .submarks[j]);

" , j + 1) ;

296

for{i=O;i<3;i++)
{

printf ("Data of student %d\n", i+l) ;
printf ("Name %s, Roll number %d\nMarks
stuarr[i] .rollno);
for{j=O;j<4;j++)

printf{"%d" ",stuarr[i] .submarks[j]);
printf ("\n");

10.10 Nested Structures (Structure Within Structure)

C in Dep

",stuarr[i] .nam

The members of a structure can be of any data type including another structure type i.e. we can inclt
a structure within another structure. A structure variable can be a member of another structure. TI
is called nesting of structures.
struct tagl {

memberl;
member2;

struct tag2 {
memberl;
member2;

member m;
)varl;

member n;
}var2;

For accessing memberl of inner structure we'll write

var2.varl.memberl

Here is an example of nested structures
struct student {

char name [20] ;
int rollno;
struct date{

int day;
int month;
int year;

} birthdate;
f loa t marks;

}stul,stu2;

Here we have defined a structure date inside the structure student. This structure date has three memb
day, month, year and birthdate is a variable of type struct date. We can access the members of im
structure as-

stu1.birthdate.day -7
stu l.birthdate.month -7
stu1.birthdate.year -7

day of birthdate of stul
month of birthdate of stul
year of birthdate of stul

th lure and Union

stu2.birthdate.day day of birthdate of stu2

297

we have defined the template of structure date inside the structure student, we could have defined
! , ide and declared its variables inside the structure student using the tag. But remember if we define

inner structure outside, then this definition should always be before the definition of outer structure.
in this case the date structure should be defined before the student structure.

=uct date{
int day;
int month;
int year;

_-::::.-uct
} ;

student{

Ie
is

char name [20] ;
int rollno;
f loa t marks;
struct date birthdate;

}stul,stu2;

advantage of defining date structure outside is that we can declare variables of date. type anywhere
also. Suppose we define a structure teacher, then we can declare variables of date structure inside

=-. ct teacher {
char name [20] ;
int age;
float salary;
struct· date birthdate, joindate;

}tl,t2;

nested ,structures may also be initialized at the time of declaration. For example

struct teacher t1= { "Sam", 34, 9000, {8, 12, 1970}, { 1, 7, 1995 } } ;

. g of a structure within itself is not valid. For example the following structure definition is invalid-
=-_ ct person{

char name[20];
int age;
float height;
struct person father; 1* Invalid* I

}emp;

- nesting of structures can be extended -to any level. The following example shows nesting at level
i.e. first structure is nested inside a second structure and second structure is nested inside a third

ture.
ct time

int hr;
s int min;
:r int sec;

:::=-.--uct date

int day;
int month;

/*Date of birth*/

298 C in De)

int year;
struct time t;

} ;

struct student

. char name[20];
struct date dob;

}stul,stu2;

To access hour of date of birth of student stu! we can write-

stu1.dob.t.hr

10.11 Pointers to Structures
We have studied that pointer is a variable which holds the starting address of another variable of ,
data type like int, float or char. Similarly we can have pointer to structure, which can point to the start
address of a structure variable. These pointers are called structure pointers and can be declared
struct student { -

char name [20] ;
int rollno;
int marks;

} ;

struct student stu, *ptr;

Here ptr is a pointer variable that can point to a variable oftype struct student. We'll use the & opera
to access the starting address of a st ·&ture variable, so ptr can point to stu by writing-

ptr = &stu;

There are two ways of accessing th\ members of structure through the structure pointer.

As .we know ptr is a po.inte~ to a struct~, so by dereferencing it we can get the contents of ~truct
vanable. Hence *ptr wIll give the contents of stu. So to access members of a structure vanable
we can write-

(*ptr).name
(*ptr).rollno
(*ptr).marks

Here parentheses are necessary because dot operator has higher precedence than the * operator. T
syntax is confusing so C has provided another facility of accessing structure members through point(
We can use the arrow operator (-» which is formed by hyphen symbol and greater than symbol.
we can access the members as-

ptr->name
ptr->rollno
ptr->marks

The arrow operator has same precedence as that of dot operator and it also associates from left
right.

/ *P10. 6 Program to understand pointers to structures * /
#include<stdio.h>
struct student {

char name [20] ;

~th
re and Union 299

int rollno;
int marks;

} ;

- :J. ()

struct student
struct student
printf ("Name
printf ("Rollno
printf ("Marks

stu={"Mary",25,68};
*ptr=&stu;
%s\t",ptr->name);

%d\t",ptr->rollno);
%d\n",ptr->marks) ;

my
lllg
as-

_ an also have pointers that point to individual members ofa structure variable. For example

int *p = &stu.rollno;

float *ptr = &stu.marks;

expression &stu.rollno is equivalent to &(stu.rollno) because the precedence of dot operator is more
that of address operator.

--------~.12 Pointers Within Structures
-_ _ inter can also be used as a member of structure. For example we can define a structure like this
===uct student {

.13 Structures And Functions

stu.ptrmem or stuptr->ptrmem

access the value pointed to by stu.ptrmem, we'll write

*stu.ptrmem or *stuptr->ptrmem

e the priority of dot and arrow operators is more than that of dereference operator, hence the expression
p~em is equivalent to *(stu.ptrmem), and the expression *stuptr->ptrmem is equivalent to *(stuptr

Jtrmem).

char name[20);
tor int *ptrmem;

} ;

___ ct student stu, *stuptr=&stu;

-~ ptrmem is pointer to int and is a member of the structure student.

access the va-lue of ptrmem, we'll write
lfe
;tll

b.is
TS.

So
ctures may be passed as arguments to function in different ways. We can pass individual members,
Ie structure variable or structure pointers to the function. Similarly a function can return either a
cture member or whole structure variable or a pointer to structure.

to

.13.1 Passing Structure Members As Arguments

-~ can pass individual structure members as arguments to functions like any other ordinary variable.

r?lO.7 Program to understand how structure members are sent to a function

_ clude<stdio.h>
- c1ude<string.h'

300 C in DeJ.

struct student
char name [20] ;
int rollno;
int marks;

} ;

display (char name [1, int rollno, int marks);
main ()
{

struct student stu1= {"John" , 12,87};
struct student stu2;
strcpy(stu2.name, "Mary");
stu2.rollno=18;
stu2.marks=90;
display(stul.name,stul.rollno,stul.marks);
display(stu2.name,stu2.rollno,stu2.marks);

}

display(char name [Lint rollno,int marks)
{ /

printf("Name
printf("RollfJ.o
printf ("Marks

%s \ t" , name) ;
%d\t", rollno) ;

%d\n" ,marks);
}

Output:

Name - John Rollno - 12 Marks - 87
I

. Name - Mary Rollno - 18 Marks - 90. L .

Here we have passed members of the variables stul and stu2 to the function display(). The narr
of t~e formal arguments can be similar to the names of the members. W~ can pass the arguments usi
call ~y reference also so that the changes made in the called function ~'ll~e reflected ~n the calli
functIon. In that case we'll have to send the addresses of the members. IS also possIble to reh

~

a single member from a function.

10.13.2 Passing Structure Variable As Argument

Passing individual members to function becomes cumbersome when there are many members and t

relationship between the members is also lost. We can pass the whole structure as an argument.

/*P10.8 Program to understand how a structure variable is sent to a functi,
*/

#include<stdio.h>
struct student {

char name [20] ;
int rollno;
int marks;

} ;

display (struct student);
main ()
{

struct student
structstudent

stul={"John",12,87};
stu2={"Mary",18,90};

h ~::.:::tlrue and Union

_. splay (stu1) i

-'splay(stu2) i

-_ ay(struct student stu)

301

_ rintf ("Name
_ rintf ("Rollno
_ rint f ("Marks

%s\t",stu.name)i
%d\t",stu.rollno) ;

%d\n",stu.marks)i

ut:

_ arne - John Rollno - 12 Marks - 87

_ arne - Mary Rollno - 18 Marks - 90

it is necessary to define the structure template globally because it is used by both functions to
variables.

name of a structure variable is not a pointer unlike arrays, so when we send a structure variable
argument to a function, a copy of the whole structure is made inside the called function and

e work is done on that copy. Any changes made inside the called function are not visible in the
g function since we are only working on a copy of the structure variable, not on the actual structure

- Ie.

3.3 Passing Pointers To Structures ,As Arguments

size of a structure is very large, then it is not efficient to pass the whole stJ'cture to the function
a copy of it has to be made inside the called function. In this case it is ~~tter to send address

- e structure, which will improve the execution speed. \--- _.

:::an access the members of the structure variable inside the calling function us~rrow operator.
- - case any changes made to the structure variable inside the called function, will be visible in the

g function since we are actually working on the original structure variable. "

::::'0.9 Pro.gram to understand how a pointer to structure variable is
=-= to a function* /
~_ ude<stdio.h>

ct student {
char name [20] ;
int rollno;
int marks;

} i

-_lay(struct student *);
-_:narks (struct student *);
- ()

struct student stu1= {"John", 12,87};
struct student stu2= { "Mary" , 18,90} ;
inc_marks (&stu1) ;
-nc_marks(&stu2) ;
display(&stu1) ;
display(&stu2) ;

Structure variables can be returned from functions as any other variable. The returned value cal
assigned to a structure of the apprOpriate type.

/*P10 .10 Program to understand how a structure variable is returned f
a function* /
#include<stdio.h>
struct student {

C in DE

%s\t",stuptr->name) ;
%d\t",stuptr->rollno);

%d\n",stuptr->marks} ;

printf ("Name
printf ("Rollno
printf ("Marks

(stuptr->marks)++;

struct student change (struct student stu)

c.har ~ame [20] ;
int ro11no;
int marks;

struct student stu1= {"John" , 12,87};
struct student stu2= {"Mary", 18,90};
stu1=change(stu1} ;
stu2=change(stu2} ;
display(stul} ;
dispYay (stu2) ;

inc_marks (struct student * stuptr)
{

} ;

void display (struct student);
struct student change (struct studertt stu);
main(}
{

}

Output

Name - John Rollno - 12 Marks - 88

Name - Mary Rollno - 18 Marks - 91

10.13.4 Returning A Structure Variable From Function

}

display (struct student *stuptr)
{

302

stu.marks=stu.marks+5;
stu.rollno=stu.rollno-10;
return stu;

void display (struct. student. stu)

printf ("Name
printf ("Rollno
printf ("Marks

%s\t",stti.name) ;
%d\t",stu.rollno) ;

%d\n",stu.marks} ;

'Jt

ure and Union 303

ut:

Name - John Rollno - 2 Marks - 92

~ame - Mary Rollno - 8 Marks - 95

13.5 Returning A Pointer To Structure From A Function

ers to structures can also be returned from functions. In the following program, the function
) returns a pointer to structure.

~

:=:0.11 Program· to understand how a pointer to structure is returned
a function* /

-=_lude<stdio.h>
-= 1ude<string.h>

-:.::. t student {
char name [20] ;
int rollno;
int marks;

} ;

__ display (struct student *);
__:::t student *func () ;
-=()

-truct student *stuptr;
5t:uptr=func () ;
~'splay(stuptr) ;

_-t student * func (

",t:ruct student *ptr;
_ r= (struct student *) malloc (sizeof (struct student));
st:rcpy(ptr->name, "Joseph") ;
_ r->rollno=l5;
_ r->marks=98;
=-eturn ptr;

::: display (struct student * stuptr)

=-~intf("Name
:;;=-intf ("Rollno
:;;=-intf ("Marks

%s\t",stuptr->name) ;
%d\t".stuptr->rollno);

%d\n",stuptr->marks) ;

t

eph 15 98

.6 Passing Array Of Structures As Argument

_ pass an array to a function, similarly we can pass the arraYI of structure to function,· where
=ement of array is of structure type. This can be written as-'

_= .12 Program to understand how an array <of structures is sent to
_-=ction * /

:'_de<stdio.h>

304 C in D.

struct student {
char name [20) ;
int rollno;
int marks;

} ;

void display (struct student);
void dec_marks (struct student· stuarr [);
main()
{

int i;
struct student stuarr [3) = {

{"Mary",12,98},
{"John",ll,97},
{"Tom",13,89}

dec_marks (stuarr) ;
for (i=O; i<3; i+-+)

- display(stuarr[i);
}

void dec_marks (struct student stuarr [)

int i;
for(i=O;i<3;i++)

. stuarr[i) .marks=stuarr[i) .marks-l0;
}

void displ,ay (struct student stu)
{

printf ("Name %s\ t", stu. name) ;
printf("RQllno - %d\t", stu.rollno);
printf ("Marks %d\n", stu.marks);

}

Output:

Name - Mary Rollno - 12 Marks - 88
Name - John Rollno - 11 Marks - 87
Name - Tom Rollno -,13 Marks - 79

All the changes made in the array of structures inside the called function will be visible in the c:
function.

The following program calculates the total marks and grade of students, and then sorts the nam
students on the basis of marks and prints out the sorted records.

/ *PIO .13 Program to find out and print the grade of students* /~-

#include<stdio.h>
#define N 5
struct student

char name[20);
int rollno;
int marks [6) ;'
int total;

ep

[lim:

:8

re and Union

char grade;

__ display(struct student arr);
- calculate (struct student arr []);

sort (struct student arr []);
- ()

struct student stu [N), temp;
~nt i, j ;
:or(i=O;i<N;i++)
{

printf ("Enter name ") ;
scanf ("%s", stu [i] . name) ;
printf ("Enter rollno ") ;
scanf (" %d" ,&stu [i] . rollno) ;
stu[i] .total=O;
printf ("Enter marks in 6 subjects
for(j=O;j<6;j++)

scanf ("%d", &stu [i] .marks [j]);
}

alculate (stu) ;
sort(stu);
:or(i=O;i<N;i++)

display(stu[i]) ;

.- calculate(struct student stull)

':nt i,j;
for(i=O;i<N;i++)
(

for(j=O;j<6;j++)
stu[i).total+=stu[i] .marks[j];

if(stu[i] .total>500)
stu[i] .grade='A';

. else if (stu[i] .total>400)
stu[i] .grade='B';

else if (stu [i] . total>250)
stu[i] .grade='C';

else
stu[i] .grade='D';

}

sort(struct student stull>

int i,j;
struct student- temp;
for(i=O;i<N-l;i++)

for(j=i+ljj<N;j++)
if(stu[i] .total<stu[j] .total)
{

temp=stu[i] ;

") ;

305 '

306 C in Dep

stu [i) =stu [j];
stu[j]=temp;

}

void display (struct student ~+- •• \

}

In the following program the records are sorted on different keys depending on the choice of the u

struct employee emp [N] ;
int i,choice;
for(i=O;i<N;i++}
{

%d\t",stu.rollno) ;
%s\n",stu.namef;
%d\t",stu.total};

-%c\n\n",stu.grade} ;

int i;
, printf ("Rollno
printf ("Name
printf ("Total
printf ("Grade

void sort_name (struct employee emp t]) ;
void sort_d6b (struct employee emp []) ;
void sort_doj (struct employee emp []) ;
void sort_salary (struct employee emp []) ;
void display (struct employee emp []) ;
int datecmp(struct date datel, struct date date2 };
main ()
{

char name [20] ;
struct date dob;
str~ct date doj;
int salary;

} ;

printf ("Enter name :");
scanf("%s", emp[i].name}; .
printf ("Enter date of birth (dd/mm/yy) "} ;
scarif("%d/%d/%d",&emp[iJ .dob.day,&emp[i] .dob.month,
&emp[i] .dob.year};
printf("Enter date of joining(dd/mm/yy} "};!

scanf("%d/%d/%d",&emp[i] .doj.day, &emp[i] ."doj.mohth,
&emp[iJ .doj.year};
printf ("Enter salary ") ;
scanf("%d",&emp[iJ .salary};

int . day;
int month;
int year;

} ; I

struct employee {

/ *P10 .14 Program to sort the records on different keys* /
#include<stdio.h>
#·define N 5
struct date {

th

re and Union

printf("\n");
}

·....hile (1)

(

printf("l.Sort by name\n");
printf("2.Sort by date of birth\n");
printf ("3. Sort by date of joining\n");
printf ("4. Sort by salary\n");
printf("5.Exit\n") ;
printf("6.Enter your choice :");
scanf ("%d", &choice);
switch(choice)
{

case 1:
sort_name (emp) ;
break;

case 2:
sort_dob (emp) ;
break;

case 3:
sort_doj (emp) ;
break;

case 4:
sort_salary(emp);
break;

case 5:
exit(l) ;
default:
printf ("Wrong choice\n");

printf ("\n");
display(emp) ;

307

display(struct employee emp [])

- t i;
_rintf("NAME\t\tDOB\t\tDOJ\t\tSALARY\n") ;
::or(i=O;i<N;i++)

p r i n t f (" %s \ t \ t" , emp [i) . name) ;
printf("%d/%d/%d\t\t",emp[i] .dob.day,emp[i] .dob.month,

p [i) . dob . year) ;
printf("%d/%d/%d\t\t",emp[i] .doj.day,emp[i] .doj.month,

~[i] .doj .year);
printf("%d\n",emp[i] .salary);

:rintf("\n") ;

_::. sort_name(struct employee emp[])

308

{

C in Dep

struct employee temp;
int i,j;
for(i=O;i<N-1;i++)
for(j=i+1;j<N;j++)
if(strcmp(emp[i] .name,emp[j] .name»O)
{

temp=emp[i];
emp[i]=emp[j] ;
emp[j]=temp;

}

void sort_dob (struct employee emp [])

struct employee temp;
int i,j;
for(i=O;i<N-1;i+~)

for(j=i+1;j<N;j++)
if (datecmp(emp[i] .dob,emp[j] .dob»O)
{

temp=emp[i] ;
emp[i]=emp[j];
emp[j]=temp;

}

void sort_doj (struct employee emp [])

struct employee temp;
int i,j;
for(i=Oii<N-1;i++)
for(j=i+1;j<N;j++)
if(datecmp(emp[i] .doj,emp[j] .doj»O)
{

temp=emp[i] ;
emp[i]=emp[j];
emp[j]=temp;

}

void sort_salary (struct employee emp [])

struct employee temp;
int i,j;
for(i=O;i<N-1;i++)
for(j=i+1;j<N;j++)
if(emp[i] .salary<emp[j] . salary)
{

temp=emp[i];
emp[i]=emp[j];
emp[j]=temp;

}

/ *Returns 1 if date1 < date2, returns -1 if date1 > date2, retu!

.i-.~,,-,",.uc:; and Union

:!qUal*/
= datecmp (struct date date1, struct date date2)

::(date1.year<date2.year)
return 1;

~_(date1.year>date2.year)

return -1;
~f(date1.month<date2.month)

return 1;
If(date1.month>date2.month)

return -1;
If(date1.day<date2.day)

return 1;
~:(date1.day>date2.day)

return -1;
::eturn 0;

4 Self Referential Structures

309

ture that contains pointers to structures of its own type is known as self referential structure.
:=xample-

_ct tag{
datatype member 1 ;
datatype member2;

struct tag *ptr1;
struct tag *ptr2;

1 d
} ; 2 \ .. h' . bl f '"

_ ptr an ptr are structure pomters t at can pomt to structure vana es 0 type struct tag, so
tag is a self referential structure. These types of structures are helpful in implementing data
es like linked lists and trees. We'll discuss the data structure linked list in this chapter.

S Linked List
- a collection of elements. There are two ways of maintaining a list in computer memory. The

ay is to take an array for storing the element~ of the list, but arrays have some disadvantages.
'on and deletion of an element from an array requires more processing. If the number of elements

list is less than the size of array then memory will be wasted and if the number of elements
~s the size of array then also we'll have problems. .

: second way of implementing a list in memory is by using a self referential structure. These types
5ts are known as linked lists. A linked list is made up of nodes where each node has two parts,
part contains the infonnation and second part contains the address of the next node. The address
of the last node of linked list will be NULL. The general fonn of a node of linked list is-

_ct node
datatype member1;
datatype member2;

310

} ;

C in Depi

struct node *link; /* Pointer to next node of the list'

info link

Address part of the node, which contains
the address of the next node

Information part of the node

NULL

The "nodes of a linked list-are not stored contiguously in memory. In array list we could perform
the operations using the array name. In the case of linked list, we'll perform all the opeFation~ w
the help of a pointer that points to the fIrst node the linked list. This pointer is generally named sl
and it is the only source through which we can access our linked list. The list will be considered em
if the pointer start contains NULL value.

Now we'll take a linked list that contail1s an integer value ih the information part. The structure
the nodes of this list will be defined as-

struct node {
int info;
struct node *link;

} ;

The pointer variable start will be declared as

struct node *start;

Here is a linked list that has 4 nodes-

start

2000

.1 15

1000

~120
1600
~25

1400

We can clearly see that the address of each node is stored in the link part of the previous node,
the address of first node is stored in the pointer variable start. The link part of the last node cont
NULL.

We'll discuss the following operations on this list.
(i) Traversal of list
(ii) Searching an element

)e and Union

rtion of an element
letion of an element

:eation of list
ersal of list

311

':.1 Traversing a Linked List

of a list means accessing each node exactly once. For this we'll take a structure pointer ptr.
ptr is assigned the v~lue of start.

7:-1" = start;

. ptr points to the first node of linked list. We can access the info part of first node by writing
o.

e'll shift the pointer ptr forward so that it points to the next element. This can be easily done
-gning the address of the next element to ptr as-

7 = ptr->link;

- has address of the next element. Similarly we can traverse each element of linked list through
ignment until ptr has NULL value, which is link part value of last element. So the linked list
traversed as-

_=(ptr!=NULL)

:;::::-intf ("%d ", ptr->info) ;
:;:::r=ptr->link;

-.2 Searching in a Linked List . J
ching an element, we traverse the linked list and while traversing we compare the info wart
element with the given element. It can be written as- /

__~(ptr!=NULL)

~=(ptr->info==data) /*Search successful*/

=_se
ptr=ptr->link; /*Go to next element* /

ta is the element, which we want to search.

-.3 Insertion into a Linked List

on in a linked list may be possible in two ways
ertion in the beginning
ertion in between or at the end.

- rt a node, initially we'll dynamically allocate space for that node using malloc(). Suppose tmp
inter that points to this dynamically allocated node. In the info part of the node we'll put the

,}ue.

p = (struct node *)malloc(sizeof(struct node));

p->info = data;

312 C in De.

The link part of the node contains garbage value, we'll assign address to it separately in the two ca

~
tmp 3000

10.15.4 Insertion in the Beginning'

After insertion the new node will become the first riode, and the node which is currently the first n
will come at second place. So we just have to adjust the links of thl;l. nodes.

Assign the value of start to the link part of inserted node as-

tmp->link = start;

Now inserted node points to the next node, which was beginning node of the linked list.

Now inserted node is the first node of the linked list. So start should be reassigned as

start = tmp

Now start will point to the inserted node, which is first node of the linked list.

The following figure shows this process, dotted lines represent the link before insertion.

start

3000

,
...

10.15.5 Insertion in Between of at the end

First we traverse the linked list for obtaining the node after which we want to insert the element.
obtain pointer q which points to the element after which we have to insert new node. For inser
the element after the node, we give the lin1.}. part of that node to the link part of inserted node and
address of the inserted node is placed into the link part of "the previous node.

tmp->link = q->link;

q->link = tmp;

Here q is pointing to the previous node. After statement 1, link of inserted node will point to the 1

node and after statement 2 link of previous node will point to the inserted node.

If the node is to be inserted at the end then also the above two statements would work. In that,
pointer q will point to the last node, hence q->link will be NULL. So after statement 1, link of inse

pth re and Union

will have NULL hence it wilf become the last node.

15.6 Deletion From A Linked List

313

- deleting a node from the linked list, first we traverse the linked list and compare with each element.
finding the element there may be two cases for deletion

Deletion of first node
Deletion of a node in between or at the el}d.

deletion of nodes also requires adjustment of links. These link manipulations will delete the node
the linked list, but it will still occupy memory. Since the memory for each node was dynamically

ated by us, so it is our responsibility to release that memory after deletion of the node. To release
memory we'll use the function free(), and for that we'll need a pointer to the node that has to

deleted. :We'll take a pointer trnp that will point to the node to be deleted and after deletion of the
'e we'll call free as-

free(trnp);

.15.7 Deletion of First Node

start

1
10°1°1

!
l ~ .

r---I ~2000 1000
~.
trnp

.1600~
1600 1400

;e

:d

- ce the node to oe deleted is the first node hence tmp will be assigned the address of first node.

trnp = start;

now trnp points to the first node, which has to be deleted.

Creation of list is very simple if you have understood the above operations. It is similar to insert
of an element at the end of the list. Initially we'll allocate memory for a node as-

tmp = malloc(sizeof(struct node»;
tmp->info = data;
tmp->link = NULL;

If the list is empty and we are inserting the first element, then we'll have to initialize the pointer s
as-

Since start points to the first node of linked list, so start->link will point to the second node of lin!<
list. After deletion of first node, the second node would become the first one, so start should be assign
the address of the second node as-

start = start->link;

Now we should free the element to be deleted, which is pointed to by tmp.

free(tmp);

10.15.8 Deletion of a Node in Between" or ~t the End

C in DeI-

1000

start

We'll traverse the list and obtain a pointer which points to the node that is just before the node to
deleted. Suppose this pointer is q, so the node to be deleted will be pointed by q->link, hence we 'i

assign this value to tmp as-

tmp = q->link;

So now tmp will point to the node to be deleted.

Now we'll assign the link part of the node to be deleted to the link part of the previous node. T
can be done, as- <.

q->link = tmp->link;

Now link of previous node will point to node that is just after the node to be deleted.

Finally we'll free the deleted node as":

free(tmp);

If node to be deleted is last node of linked list then second statement can be written as

q->link = NULL;

10.15.9 Creation Of List

314

pt

re and Union 315
k
n if (start = = NULL) /*If list is empty */

start ~ tmp;

that we'll keep on inserting new nodes at the end of the list.

we are in a position to write a program that creates a linked list and performs 'operations on it.
operation has been implemented inside a separate function, The pointer start is taken as global
t all functions can access it and it makes our program simple, If we declare start inside mainO
e'll,have to pass it to all other fUij.ctions and use a pointer to pointer inside those functions,

be
'ill

:::'0,15 Program of single linked list*/
-=.::lude <stdio, h>
-::lude <malloc.h>
-:.:ct node

int info;
struct node *link;

.s=art;

()

int choice,n,m,position,i;
while (1)
{

printf (" 1. Create List \n") ;
printf("2.Add at begining\n");
printf ("3 .Add after \n");
printf("4.Delete\n");
printf("5.Display\n");
printf.("6.Search\n") ;
printf("7.Quit\n") ;
printf ("Enter your choice ") ;
scanf("%d",&choice);
switch(choice)
{

case 1:
start=NULL;
printf ("How many nodes you want ") ;
scanf ("%d" , &n) ;

for(i=O;i<n;i++)
{

printf ("Enter the element
scanf("%d",&m) ;
create_list (m) ;

\\) ;

rt

}

break;
case 2:

printf ("Enter the elem~nt

scanf ("%d" ,&m) ;
addatbeg (m) ; .
break;

case 3:

\\) i

316 C in Del

printf ("EntGr the elemen.t ") ;
scanf ("%d" ,&m) ;
printf ("Enter the position after which this element
inserted ");
scanf("%d",&position);
addafter(m,position);
break;

case 4:
if (start==NULL)
{

printf ("List is empty\n");
continue;

}

printf ("Enter the element
scanf ("%d" ,&m) ;
del (m) ;
break;

cas·e 5:
display () ;
break;

case 6:
printf ("Enter the element
scanf ("%d", &m) ;
search (m) ;
break;

case 7:
exi t () ;

default:
printf ("Wrong choice\n");

}/*End of switch*/
}/*End of while*/

}/*End of main() */

create_list(int data)
{

struct node *q, *tmp;
tmp=malloc(sizeof(struct node));
tmp->info=data;
tmp->link=NULL;
if (start==NULL)/ * If list is empty* /

start=tmp;
else

/*Element inserted at the end*/
q=start;
while(q->link!=NULL)

qj=q->link;
q->link=tmp;

}

}/*J2nd of create_list ()*/.

for deletion~

to be searched ") ;

lep re and Union

- tbeg(int data)

struct node *tmp,
-mp=malloc(sizeof(structnode»,
mp->info=data,
mp->link=start,

start tmp,
~3nd of addatbeg () * 1

-- fter(int da.ta, int pos)

struct node *tmp, *q,
int i,
q=start;
=or(i=O,i<pos-l,i++)
{

q=q->link,
if (q==NULL)
{

printf ("There are less than %d elements", pos),
return,

}

} 1*End of for* 1
tmp=malloc(sizeof(struct noae)),
tmp->link=q->link,
tmp->info=data,
q->link=tmp, ~

cr nd of addaft_er() * I -.

-=:(int data)

struct node *tmp, *q,
if(start->info==data)
{

tmp=start,
start=start->link, I*First element deleted*1
.free (tmp) ,
return,

}

. q=start,
while(q->link->link!=NULL)
{

if(q->link->info==data)/*Element deleted in between*1
{

tmp=q->link,
q->link=tmp->link,
free(tmp);
return,

}

q=q~>link,

}/*End of while *1 ,

317

..
318

if (q->link->info==data) /*Last element deleted* /
{

tmp=q->link;
free(tmp) ;
q->link=NULL;
return;

}

printf ("Element %d not found\n", data) ;
}/*End of del()*/

C in Del

display ()
{

struct node *q;
if(start==NULL)
{

printf ("List is empty\n");
return;

q=start;
printf ("List is : \n") ;
while(q!=NULL)
{

printf ("%d ", q->info) ;
q=q->link;

}

printf (" \n") ;
}/ *End of display (* /

search (int data)
{

struct node *ptr=start;
int pos=l;
while(ptr!=NULL)
{

if (ptr->info==data)
{

printf("Item %d found at position %d\n",data,pos);
return;

}

ptr=ptr->link;
pos++;

}

if (ptr==NULL)
printf ("Item %d not found in list\n", data);

}/*End of search()*/

10.15.10· Reversing A Linked List

Let us take a linked list-

._-~ and Union 319

'Pt
start

~25
1400

'~120
1600

115
1000

want to reverse this linked list. Reverse of this linked list will satisfy the following conditions

- t node will b~come the last node of linked list.

t node will become the first node of linked list and now start will point to it.

of 2nd node will point to 151 node, link of 3'd node will point to second node and' so Oll'.

of last node will point to the previous node of last node in linked list.' ~.•.
ersed linked list will be as- .

start .

....._&.1..on Of reverse()

take three pointers pI, p2 and p3. Initially pI, p2 and p3 will point to first, second and third
.:- linked list.

_ = start;

- = pI -> link;

_ = p2 -> link;

start

reverse list first node will become the last node, so link part of first node should be NULL.

__->link = NULL;

., 320 C in j

The link of second node should point to first node hence

p2->link = pI;

Now we will traverse the linked list with p3 pointer and shift pointers pI and p2 forward. We •
pI to the link part of p2, so that link of each node will now point to its previous node.

p2->link=pl;
while(p3!=NULL)
{

pl=p2;
p2=p3;
p3=p3->link;
p2->link=pl;

}

When this loop will terminate p3 will be NULL, p2 will point to last node, andli~
now point to its previous node. Now start should point to the last node of the linked list, which.
node of reversed linked list.

start = p2;

start

11400 1---------------------.

p3==NULL

If the list contains only one element then there will be a problem in initializing p3, hence we
this condition in the beginning-

if (start->link = = NULL)
return;

Here is the function reverse that reverses a linked list.
reverse ()
{

struct node *pl, *p2, *p3;
if (start->link==NULL) / *if only one element in the list * /

return;
pl=start;
p2=pl->link;
p3=p2->link;

pl->link=NULL;
p2->link=pl;

321

pl==p2;
p2==p3;
p3==p3->link;
p2->link==p1;

re and· Union

. hile (p3 ! ==NULL)
{

}

start==p2;
=d of reverse (* I

.16 union

} ;

structure variables, the union variables can be declared along with the definition or separately. For
le-

a

is a derived data type like structure and it can also contain members of different data types. The
used for definition of a union, declaration of union variables and for accessing members is similar

Ie used in structures, but here keyword union is used instead of struct. The main difference between
and structure is in the way memory is allocated for the members. In a structure each member
own memory location, whereas members of union share the same memory location. When a .

Ie of type union is declared, compiler allocates sufficient memory to hold the largest member in
~on. Since all members share the same memory location hence we can use only one member at

e. Thus union is used for saving memory. The concept of union is useful when it is not necessary
e all members of the union at a time. . .

syntax of definition of a union is-
-- n union_name{

dataype member1;
da ta type member2;

n union_name {
datatype member1;
da ta type member2;

}variable_name;

-- can also be declared as-

union union_name variable_name;

- can access' the union members using the same syntax used for structures. If we have a union variable
the members can be accessed using dot(.) operator, and if we have a pointer to union then the
bers can be accessed using the arrow (-» operator.

?lO .16 Program for· accessing union members* I
-- clude<stdio.h>
--':'n ()

union resul t (
int marks;
char grade;
float. per;

322 C in Depth

}res;
res.marks=90;
printf("Marks %d\n",res.marks);
res. grade= 'A' ;
printf("Grade %c\n",res.grade);
res.per=85.5;
printf("Percentage %f\n",res.per);

} ;

union utag{

compare the memory allocated for a union and structu
""

/* P10.17 Program to
variable*/
#include<stdio.h>
struct stag{

union utaguvar;
struct stag svar;
printf ("Size of svar %u\n", sizeof (svar)) ;
printf ("Address of svar %u \ t" ,&svar) ;
printf ("Address of members %u %u %u \n" ,&svat. c, &svar. i, &svar.
printf ("Size of uvar = %u \n", sizeof (uvar)) ;

main(
{

char c;

int i;
float f;

}

Output:
Marks: 90
Grade: A
Percentage: 85.500000

Before the first printf, the value 90 is assigned to the union member marks, so other members grad
and per contain garbage value. After first printf, "the value 'A' is assigned to the union member gradl
So now the other two members marks and per contain garbage value. Only one member of union ca
hold yalue at a time, don't try to use all the members simultaneously. So a union variable of type resu
can be treated as either an int variable or char .variable or a float variable. It is the responsibility I

the programmer to keep track of member that currently holds the value.

Union variables can also be initialized, but there is a limitation. We know that due to sharing of memOI
all the members can't hold values simultaneously. So during initialization also only one member can
given an initial value, and this privilege is given to the first member. Hence only the first member
a union can be given an initial value. The type of the initializer should match with the type of the fi:
member. For example, we can initialize the above union variable as-

union result res ={78};

Now we'll take a program and compare the memory allocated for a union and structure variable

char c;
int i;
float f;

pth
re and Union 323

'ade
ade
car.
sui:
(0:

_rintf("Address of uvar %u\t",&uvar);
printf ("Address of members %u %u %u \n" ,&uvar. c, &uvar. i, &uvar. f) ;

nt :

ize of svar = 7
Address of svar : 65514 Address of members: 65514 65515 65517

ize of uvar = 4
Address of uvar,: 65522 Address of members: 65522 65522 65522

65514 65515 65516 65517 65518 65519 65520

I I~I I----'--~I I I
--..~ ..~ ---f-----+~

65522 65523 65524 65525

orr
lbf
r 0:
fir

o...

) ;

.-C--.

.--i--.~

.~---~ f-------.~

addresses of member~ of a union are same while the addresses of members of a structure are
-.;.rent. The difference in the sizes of variables svar and uvar also indicates that union is very economical

e use of memory. Note that the sizes of both union and structure variables may be affected by
~ . g as discussed previously.

cture may be a member of union or a union may be a member of structure. For example
-"on result

int marks;
char grade;

.::::=uct res

char name [15] ;
int age;
union result performance;

data;

data is the structure variable of type struct res. It has three members, an agay of characters name,
integer age and a union member performance. Union will take only one value at a time, either an

- ger value marks or a character value grade. This can also be written as-
=::ruct res

char name [15] ;
intage;
union resul t

324 C in Dept.

int marks;
char grade;

} performance;
}data;

If we want to use the member grade then we can write

data.performance.grade

Similarly to use the mem~er marks we can write-
-~

data.performance.marks I
Some other features of union are-
(1) Arrays of unions can be declared.
(2) Functions can take union variable as arguments and can return union variables.
(3) Pointers to unions can be declared.
(4) Unions can be nested:
(5) Unions can be self referential like structures.

Besides saving memory space, unions can be helpful in other situations also. We can use unions
declare an array that can hold values -of different data type. The program below shows this-

/*P10 .18 Program that uses an - array of union to hold values of differel
data types * /
#include<stdio.h>
union num{

int i;
long int 1;
float f;
double d;

} ;

main(

union num arr [10J; /*Size of this array will be 10*sizeof (double)
arr[0].i=12;
arr[11.l=400000;
arr[2J .f=11.12;
arr[3] .d=23 .34;
printf ("%d\t", arr[OJ . i);
'printf("%ld\t" ,arr[lJ .1);
pr in t f ("% f \ t" , arr [2] . f) ;
printf("%f\n" ,arr[3] .d);

}

Output:
12 400000 11.120000 23.340000

Unions are also helpful in low level programming. We may manipulate the individual bytes in a d
type using union. For example we can find whethera given machine's byte order is little-endian or b
endian. First we'll see what is a machine's byte order and then we'll write a program to deterrn
the same.

The byte order of a machine specifies the order in which a multibyte data item is stored in mem(

7th "'=-::'JTie and Union 325

ary representation of integer· 5193 in 2 bytes is-

big-endianlittle-endian

:- Howing figure shows how this integer is stored in different byte orders.

010100 01001001

~~

S Byte L S Byte

There are two common byte orders.

Most significant byte is stored at the lowest address

Least significant byte is stored at the lowest address.

- ily of processors use little-endian byte order, Motorola family of processors use big-endian
_ er.

to
2000

2001

0100 1001

0001 0100

LSB

MSB

.2000

2001

0001 0100

0100 1001

MSB

LSB

at
e-endian, the least significant byte is stored at the lower address(2000), while the most significant

- stored at the higher address(200 I). In big-endian the MSB is stored at the lower address(2000),
_ the LSB is stored at the higher address(200 1).

- Howing program determines the byte order of a machine-

-: .19 Program to·· determine the byte order of a· machine* /
-.::::':'ude<stdio.h>

'/
_nion{

int x;
char c [2J;

}var;
ar.x=l;

':'f(var.c[OJ==l)
printf("Little endian\n");

else
printf ("Big Endian\n");

ake our program portable we can take the size of character array to be. equal to the size of int
- e machine by specifying sizeof operator.

e above example we had examined individual bytes of int data type, we may take any other data
also. For example in. the next example we can examine the individual bytes of a variable of type

_ t stu-
_= ct student {

char name [30J;
int age;

326

union{
} ;

int class;

C in De

struct student stu;
char c [sizeof (student)] ;

}var;

Now we can access the information stored in var.stu bytewise, this may be helpful in writing the struc
variable var to any file byte by byte.

10.17 typedef
The type definition facility allows us to define a new name for an existing data type. The general SYJI
is-

typedef data_type new_name;

Here typedef is a keywo~d, data~type is any existing data type that rna be a standard data typ
a user defined type, new_name is an identifier, which is a new name for thi data type. Note tha~

are not creating any new data type but we are only creating a new name for the existing data t]

For example we can define a new name for int type by writing-

typedef int marks;

Now marks is a synonym for int and VIe can use marks instead of int anywhere in the progra
example-

~arks sub I, sub2;

Here sub I, sub2 are actually int variables and are similar to any variable declared using int keyw
The above declaration is equivalent to-

. int sub1, sub2;

Some more examples are-

typdef usigned long int ulint;

typedef float real;

Here ulint is another name for type unsigned long int, and real is another name for float. The typ
declaration can be written wherever other declarations are allowed. We can give more than one n

to a single data type using only one typedef statement. For example-

typedef int age, marks, units;

In the above typedef statement, we have defined three names for the data type int.

Since typedef is syntactically considered as a storage class, so we can't include a storage class in typ
statement. For example statements of these types are invalid-

typedef static char schar;

typedef-extem int marks;

Now we'll see how typdef can be used to define new names for pointers, arrays, functions and struct

1. Pointers

typedef float *fptr;

After this statement, fptr is a synonym for float * or pointer to float. Now consider this declara

cture and Union 327

fptr p, q, *r;

- e p and q are declared as pointer to float, while r is declared as a pointer to pointer to float.

Array

typedef int intarr[10];

- er this statement intarr is another name for integer arrays of size 10. Now consider this declaration
ement-

intarr a, b, c[15]; (Equivalent to ~ inta[10], b[10], c[15][10];)

-ere a, b are declared as 1-D arrays of size 10, and c is declared as 2-D array of size 15x10.

Functions

typedef float funct(float, int);

- e funct is any function that takes two values, one float and one int and returns a floa~-:--~

- iW consider this declaration statement- _ - /

funct add, sub, mul, div;

add, sub, mul, div are declared as functions that take a float and int value and return a float value.
- e above statement is equivalent to the following /declaration sta~ements-

float add(float, int); /

float sub(float, int);
float mul(float, int);
float ,div(float, int);

-. Structures

_rrnilarly we can also use typedef for defining a new name for structures. Suppose we have this structure
'tion-

-=-=ruct studentrec {
char name[20];
int marks;

} ;

_- w whenever we want to use this structure we have to write struct /studentrec. We can give a short
d meaningful name to this structure by typedef. I

typedef struct studentrec Student;

_-ow we can declare variable like this-

Student stu1, stu2; (Equivalent to ~ struct studentrec stu1, stu2;)

e can also combine typedef and structure definition. The syntax. is as-
=:''Pedef struct tagname { !

datatype memberl;

}newname;

~e tagname can be same as the newname. We can omit the tagname if the structure is not selfrefrential.
/

=::pedef struct

...
328 C in Depth

char narne(20];
int age;

}person;
person student,teacher,ernp;

Here person is a new name for thi~ structure and we have defined three structure vari~bles, which hav!
the format of the above definition.

In our linked list structure~ definition, we can write
typedef struct node
{

int i tern;
struct node *lihk;

}node;

Now we can use node instead of struct node anywhere in our program-

node *start, *ptr;

Here new name is same as that of tagname. Here we can't omit the tagname since we have to definl
a pointer to the same structure inside the structure.

Advantages of using typedH
1. It makes our programs more readable and understandable since we can document our progran

by giving meaningful and descriptive names for existing types.

2. In structures it is important since we can give a single name to the structure, we need not wrin
struct keyword repeatedly.

3. It makes our programs more portable. When program is run on a different machine on whicl
standard data types are represented by' different number of bytes, only typedef statement has tl
be changed.

The typedef declarations may seem similar to #define directives, but they are different. The basic differenc
is that the typedef declarations are interpreted by the compiler while #define directives are, processe
by the preprocessor. In #define directive we can define an expansion for any text while in typedef w
can only define new names for data types only. The following program shows the difference betwee
#define directive and typdef declaration.

;*P10. 20Prograrn to understand the difference between #define and typedef*
#include<stdio.h>
#define fp float *
rnain()
{

fp pl, p2 , p3 ;
typedef float * fptr;
fptr ptrl, ptr2, ptr3;
printf ("%u %u %u\n", sizeof (pl), sizeof (p2), sizeof (p3));
printf ("%u %u %u\n", sizeof (ptrl) ,sizeof (ptr2) ,sizeof (ptr3)) ;

Output:

244

222

'h jZ:..:z::ue and Union 329

me output we can see that pI is declared as a pointer to float while p2 and p3 are declared as
ariables. Actually the preprocessor expanded the declaration as-

- oat *pl, p2, p3;

. g #define we could not successfully define a new name for pointer to float type.

°ablesptrl, ptr2, ptr3 are all declared as pointers to float, so typedef successfully defined a
mune for the type pointer to float.

Exercise
e that stdio.h is included in all programs.
in (I

struct A{
int marks;
char grade;

.}Al;
struct A Bl;
Al.marks=80;
AI. grade= 'A' ;
printf ("Marks
printf ("Grade
Bl = AI;
printf ("Marks
printf ("Grade

ain (I

struct rec {

%d \ t" ,AI. marks I i

%c\t" ,Al.grade I;

%d\ t", Bl.marks I;
%c\n",Bl.grade I;

char *name;
int age;

}*ptr;
char namel [10] ="Somalika";
ptr->name=namel;
ptr->age=93;
printf("%s\t",ptr->name);
printf("%d\n",ptr->age) ;

}

struct student
ain ()

{

char name[20]; int age; };

struct student stul= {"Ani ta" , 1 O}, stu2= {"Ani ta" , 12} ;
if(stul==stu2)

printf("Same\n");
else

printf'("Not same\n");

:nain(

no Ci

struct tag{
int i;
char c;
} ;

struct tag var= {2, 's' } ;
. rune (var) ;

}

func (struct tag v)
{

printr("%d %c\n",v.i,v.c);

(5) main (

struct tag {
int i;
char c;

} ;

struct tag var={2,'s'};
func(var) ;

}

func (struct {int i; char c;} v
{

printr("%d %c\n",v.i,v.c);

(6) struct tag{ int
void func (struct
main ()
{

i; char.
tag) ;

c; } ;

struct tag var={12,'c'};
func(var) ;
printf("%d\n",var.i);

}

void rune (struct tag var)

var. i++;

(7) struct tag{ int
void func (struct
main ()
{

i; char
tag *) ;

c; } ;

struct tag var={12,'c'};
rune (&var) ;
printf("%d\n",var.i) ;

}

void func (struct tag *ptr)

ptr->i++;

%s\n", rec .name);
I

........,::""nlre and Union

include<string.h>
ain ()

union tag{
char name [15] ; .
int age;

}rec;
strcpy(rec.name, "So~alika");
rec.age=23;
printf ("Name

struct{
char a[20];
int b;
union{

double c;
struct{

char d[15];
float e;

} x;

}y;
} z;

main(

printf ("%u %u %u\n", sizeof (z .y.x), sizeof (z .y), sizeof (z»;

-)main(
{

typedef short int
unsigned s_int var
printf("%u",var);

-)typedef struct tag{ int i; char c; }tag;
main ()
{

struct tag vl={l,'a'};
tag v2={2;'b'};
printf("%d %c %d %c\n",vl.i,vl.c,v2.i,v2.c);

331

:2)typedef
typedef
main()
{

struct
struct

{

{

char name[20];
int data; node

int age; }stu;
*link;}node;

·stu *p=malloc(sizeof(stu»;
node· *ptr=malloc(sizeof(node»;
p->age·=3 0;
ptr;->data=3;

332 C in D

print f (" %d %d \n" , p->age, ptr->data) ;

Programming Exercise
1. Write a program to accept name, age and address of five persons and display the name of e

person.
2. Write a program to accept name and arrival time of five trains and display the name with Rail

time format.
(Note: For example 2PM is written as 14.00)

3. Write a program to accept 10 records with the structure-
struct {

char *name;
int *age;
float salary;

}

Display the records before sorting and after sorting. Sorting is based on the primary key ru
and secondary keyage.

4. Write a program to ~ccept five records of employee. The structure is-
struct{ .

char name [25] ;
int age;
int basic;

}

Calculate the total slary of the employees as
Total salary = Basic + DA + HRA
DA = 10% of basic
HRA = 5% of basic
Display the name, age and total salary of the employees in descending order on the basis of

. salary..
5. Write a program to concatenate one linked list at the end of another.
6. Write a program to remove first node of the list and insert it at the end.
7. Write a program to count the number of occurrences of an element in the list.
8. Find the largest and smallest element of a linked list, print total of all elements and find ou

average.
·9. Write a program that maintains records of students using linked list. The structure of nod

list would be-
struct node {

char name [20] ;
int rollno;
int marks;
struct node *link;

}

Now search a particular record based on roll number.

Answers
(1) Marks = 80 Grade = A Marks = 80 Grade = A

re and Union 333

omalika 93

Error, illegal structure operation. Since relational operators can't be used with structures. If we
want to compare them then we'll have to make a function that compare all the members one by
one.

Error: undefined symbol i, and undefined symbol c. ;The structure definition is written inside mainO,
so it can't be accessed by function func(). It should be written before main() so that it is accessible
o all functions.

2 s

12

13
Garbage value will be printed, because currently the member age has been assigned a value.

19 19 41
Size of innermost structure is 19(15+4). The union contains two members of sizes 15 and 19,
so the size of union is 19. The size of outermost structure is 41(20+2+19).

This program will give errors, since it not valid to combine type specifiers(unsigned, long) with
typedef names.

) 1 a 2 b

The first typedef declaration is correct but the second one is not correct. Since in the second
declaration the structure is self referential so we can't omit the structure tag.

<--

Chapter 11

Files

There are two ways of storing <hta in files, binary format and text format. In text format, data is ston
as lines of characters with each line terminated by a newline character('\n'). In binary format, data
stored on the disk in the same way as it is represented in the computer memory. Unix system dOl
not make any distinction between text file and binary files.

Text files are in human readable form and they can be created and read using any text editor, whi
binary files are not in human readable form and they can be created and read only by specific progran
written for them. The binary data stored in the file can't be read using a text editor.

The integer 1679 will take only 2 bytes in a binary file while it will occupy 4 bytes in a text file becau:
in-binary file it is stored as an integer. while in text file it is stored as a sequence of 4 characters i.
'I', '6', '7', '9'.

The hexadecimal value of 1679 is Ox068F, so in binary format it is represented by the two bytes Ox(
and Ox8F. In a text file, this number 1679 is represented by the bytes Ox31, Ox36, Ox3 7, Ox39(ASC
values).

Text And Binary Modes11.1

The input and output operations that we have performed so far were done through screen and keyboaJ
only. After termination of program, all the entered data is lost because primary memory is volatile..
the data has to be used later, ihen it becomes necessary to keep it in permanent storage device. C suppor
the concept of files through which data can be stored on the disk or secondary storage device. n
stored data can be read whenever req~ired. A file is a collection of related data placed on the dis]

The file handling in C can be broadly categorized in two types-
• . High level(standard files or stream oriented files)
• Lowlevel(system oriented files)

High level file handling is managed by library functions while low leyel file handling is managed by syste
calls. The high level file handling is commonly used since it is easier to manage and hides most of tl
details from the programmer. In this chapter we'll discuss about high level file handling only.

The header file stdio.h should be included in the program to make use of the I/O functions. We hm
already perfQrmed I/O with screen and keyboard using functions like scanf(), printf(), gets(), puts(
getchar() and putchar(). The advantage of using stream oriented file I/O is that the I/O in files
somewhat similar to the screen, keyboard I/O. For example we have functions like fscanf('), fprintf(
fgets(), fputs() which are equivalent to the functions that we have studied earlier.

Binary

Text

0000

0011

0110

0001

1000

0011

1111

0110 0011 0111 0011 1001

335

text files and binary files keep record of the length of the file, and identify the end of file when
length is reached. In text files, there is one more way to detect the end of file. The character with

value 26 is considered to be the end of file character in text files. All input functions stop reading
a text file when this character is encountered and return an end of file signal to the program.

- s ~ot insert this character in the file, it can be entered through the keyboard by Ctr!+Z(or Ctr!
::> on some systems). In binary files no such character represents the end of file.

- xt files newline is stored as a combination of carriage return '\r'(ASCII 13) and linefeed '\n'(ASCII
while in binary files newline is stored only as '\n'(ASCII 10).

inary format, the data is stored in the same way as it is represented in memory so no conversions
to take place while transferring of data between memory and file. I!1 text format some conversions"

~ to take place while transferring data between memory and file. For example while writing to a
file "newline('\n') has to be converted to a combination of i\r' and '\n' and while reading from a
file this combination ('\n' and '\r') is converted back to '\n'.

input and output "operations in binary files take less time as compared to that of text files because
. ary files no conversions have to take place. However the data written using binary format is not

. portable since the size of data types and byte order may be different on different machines. In
format, these problems do not arise so it is. considered more portable.

.2 Concept Of Buffer
r is an area in memory where the data is temporarily stored before being written to the file. When

_ open a file, a buffer is automatically associated with its file pointer. Whatever data we send to the
. not immediately written to the file. First it is sent to the buffer and when the buffer is full then

=ontents are written to the file. When the file is closed, all the contents of buffer are automatically
en to the file even if the buffer is not full. This is called flushing the buffer, we can also explicjtly

- the buffer by a function fflush() described later.

oncept of buffer is used to increase efficiency. Had there been no buffer we would have to access
isk each time for writing even single byte of data. This would have taken lot of time because each
the disk is accessed, the read/write head has to be repositioned. When buffering is done, the data

_oUected in the buffer and data "equal to the size of buffer is written to the file at a time, so the
er of times disk is accessed decreases, which improves the efficiency.

steps for file operations in C programming are as follows-
Open a file
Read the file or write data in the file
Close the file

functions fopen() and fclose() are used for opening and closing the files respectively.

.3 ~" Opening a File
e must be opened before any I/O operations can be performed on that file. The process of establishing

ection between the program and file is called opening the file.

cture named FILE is defined in the file stdio.h that contains all information about the file like
e, status, buffer size, current position, end of file status etc. All these details are hidden from the

336

programmer and the operating system takes care of all these things.
typedef struct {

C in Dept

}FILE;

A file pointer is a pointer to a structure of type FILE. Whenever a file is opened, a structure of tYJ
FILE is associated with it, and a file pointer that points to this structure identifies this file. The. functi~

fopen() is used to open a file.

Declaration:

FILE .*fopen(const char *filename, const char *mode);

fopen() function takes two strings as arguments, the first one is the name of the file to be open
and the second one is the mode that decides which operations(read, write, append etc) are to
performed on the file. On success, fopen() returns a pointer of type FILE and on error it returns NUl!
The return value of fopen() is assigned to a FILE pointer declared previously. For example-

FILE *fp l, *fp2; . ,

fp 1 = fopen ("myfile. txt", "w");
fp2 = fopen ("yourfile:dat", "r");

The name of a file is limitecrto FILENAME_MAX characters. After opening the file with fopen(),
name of file is not used in the program for any operation on it. Whenever we have to perform a
operation on the file, we'll use the file pointer returned by fopen() function. So the name of file
sometimes known as external name, while the file pointer associated with it is· known as its inten
name. The second argument represents the mode in which the file is to be opened. The possible vall
of mode are-

l."w" (write)

If the file doesn't exist then this mode creates a new file for writing, and if the file alreaciy exi~ts tJ
the previous data is erased and the new data entered is written to the file.

2. "a"(append)

If the file doesn't exist then this mode creates a new file, and if the file already exists then the]]
data entered is appended at the end of existing data. In this mode, the data existing in the file is
erased as in "w" mode.

3. "r" (read)

This mode is used for opening an existing file for reading purpose only. The file to be opened Il!

exist and the previous data of file is not erased. i

4. "w+" (-write+read)

This' mode is same as "w" mode but in this mode we can also read and modify the data. If the
doesn't exist then a new file is created and if the file exists then previous data is erased.

5. "r+" (read+write)

This mode is same as "r" mode but in this mode we can also write and modify existing data. The
to be opened must exist and the previous data of file is not erased. Since we can add new data

-- modify existing data so this mode is also called update mode.

337

+" (append+read)

:ilOde is same as the "a" mode but in this mode we can also read the data stored in the file. If
e doesn't exist, a new file is created and if the file already exists then new data is appended at

of existing data. We cannot modify existing data in this mode. '

a file in binary mode we can append 'b' to the mode, and to open the file in text mode 't'
_ appe'nded to the mode. But since text mode is the default mode, 't' is generally omitted while

g files in text mode. For example-

~" Binary file opened in write mode

ab+" or "a+b" Binary file opened in append mode

+" or "r+t" " Text file opened in update mode

,It Text file opened in write mode

.1 Errors in Opening Files

error occurs in opening the file, then fopen() returns NULL. So we can check for any errors
_ 'ng by checking the return v"alue of fopen().
~ *fp;
=:: pen("text.dat","w");
=~==NULL)

_rintf("Error in opening file");
exit (1) ;

in opening a file may occur due to various reasons, for example-

If we try to open a file in read or update mode, and the file doesn't exist or we do not have read
ermission on that file.

If we try to create a file but there is no space on the disk or we don't have write permission.

If we try to create a file that already exists and we don't have permission to delete that file.
Operating system limits the number of files that can be opened at a time and we are trying to
open more files than that number.

_ -an give full pathname to open a file. Suppose we want to open a file in DOS whose path is
oksdir\names.dat", then we'll "have to write as-

fp = fopen(IE:\\booksdir\\names.dat", "r");

_ we have used double backslash because single backslash inside string is considered as an escape
ter, '\b' and '\n' will be regarded as escape sequences if we use single backslash. In Unix, a single
d slash can be used.

r give the mode in single quotes, since it is a string not a character constant.

fp = fopen("file.dat", 'w'); /*Error*/

Closing a File
file that was opened using fopen() function must be closed when no more operations are to be

ormed on it. After closing the file, connection between file and program is broken.

aration: int fclose(FILE *fptr);

losing the file, all the buffers associated with it are flushed i.e. all the data that is in the buffer

338 C in D,

is written to the file. The buffers allocated by the system for the file are freed after the file is clc
so that. these buffers can be available for other files. Some systems have a limitation on the mu
of file~ that can be opened at a time, so we should close the files that are not currently in use so
we can open other files.

Although all the files are closed automatically when the program terminates normally, but somet
it may be necessary to close the file by fclose() e.g. when we have to reopen the file in some (
mode or when we exceed the number of opened files permitted by the system. Moreover it is a I
practice to close files explicitly by fclose() when no more operations are to be performed on the
because it becomes clear to the reader of the program that the file has no use now.

fclose() returns EOF on error and 0 on success(EOF is a constant defined in stdio.h and its \
is -1). An error in fclose() may occur when there is not sufficient space on the disk or wher
disk has been taken out of the 'drive.

If more than one files are opened, then we can close all the files by calling fclose() for each
fclose(fptrl) ;
fclose(fptr2) ;

We can also close multiple files by calling a single function fcloseall(). It closes all the opened.

Declaration: int fcloseall(void);

On error, fcloseapc) returns EOF and on success it returns the number of files closed. We can
it as- ,

\
n=fcloseall () ;
if (n==EOF)

printf ("could not close all open files\n");
else

printf ("%d files success fully. closed \n" ,n) ;

11.5 End of File ...

The file reading functions need to know the end of file so that they can stop reading. When the
of file is reached, the operating system sends an end-of-file signal to the program. When the pro,
receives this signal, the file re'ading functions return EOF, which is a constant defined in the file Stl
and its value is -1. EOF is an integer value, so make sure that the return value of the function is assi
to an integer variable. Note that the value EOF is not present at the end of the file, it is returm
the file reading functions when end of file is reached.

11.6
main(

Structure of a General File Program

FILE *fp;
fp=fopen("filename", "mode");

fclose (fp);
}/*End of main */

339

Predefined File Pointers
::redefined constant file pointers are opened automatically when the program is executed.

File pointer Device

stdin Standard input device(Keyboard))
stdout Standard output device(Screen)
stderr Standard error output device (Screen)

tions used for file I/O are

cter I/O - fgetc(), fputc(), getc(), putc()
_ - g I/O - fgets(), fputs()

ger I/O - getw(), putw()
- atted I/O - fscanf(), fprintf()

ord I/O - fread(), fwrite()

- -cuss all these functions one by one in detail.

Character I/O

fputc ()

lliE::.:z::r:!tion: int fputc(int c, FILE *fptr);

ction writes a character to the specified file at the current file position and then increments
position pointer. 'On success it returns an integer. representing the character written, and on error

EOF.·
understand the use of fputc () function* /

=-=::"E *fptr;
--=~ ch;.
_~«fptr=fopen("myfile.txt",Ow"))==NULL)

printf ("File does not exist\n");
exi t. () ;

",::'se

printf ("Enter text : \n") ;
/*Press Ctrl+z in DOS and Ctrl+d in Unix to stop reading characters*/
while ((ch=getchar ()) ! =EOF)

fputc (ch, fptr);

::=:'ose (fptr) ;

!!l

C in De

The woods are lovely, dark and deep

But I have miles to go before I sleep.
/'Z

After the execution of this program, this text along with the /\Z character will be written to the
myfile. txt.

11.8.2 fgetc()

Declaration: int fgetc(FILE *fptr);

This function reads a single character from a given file and increments the file pointer position.
success it returns the character after converting it to an int without sign extension. On end of file
error it returns EOF. In the next program we'll read the file myfile.txt that we have created in the prevo
program.

/ *Pll. 2 . Program to understand the use of fgetc () * /
#include<stdio.h>
main ()
{

FILE *p;
char ch;
if((p=fopen("myfile.txt", "r"))==NULL)

printf("This file doesn't exist\n");
else

while«ch=fgetc(p» !=EOF)
printf ("%c", ch);

}

fclose (p) ;
}

Output

The woods are lovely, dark and deep

But I have miles to go before I sleep.

The while loop that we have written in the program is equivalent to this code~

ch=fgetc (p) ;
while(ch!=EOF)
{

printf("%c",chl;
fgetc(p) ;

}

The value returned by fputc() and fgetc() is not of type char but is of type int. This is because
functions return an integer value EOF(-l) on end of file or error. The variable ch that is used t~

the character read from the file, is also declared to be of int type for this reason only.

11.8.3 getc() and putc()

The operations of getc() and putc() are exactly similar to that of fgetc() and fputc(), the only difl
is that the former two are defined as macros while the latter two are functions.

341

Integer I/O

.1 putw ()

ation: int putw(int value, FILE *fptr)

function writes an integer value to the file pointed to by fptr. It returns the integer written to the
on success, and EOF on error.

::=:1.3 Program to understand the use of putw () function* /
-=clude<stdio.h>
- ()

FILE *fptr;
int value;
fptr=fopen("num.dat", "wb");
for(value=1;value<=30;value++)

putw(value~fptrl;
fclose (fptr) ;

.~ program will write integers from 1 to 30 into the file "num.dat" .

.9.2 getw()

laration: int getw(FILE *fptr);

's function returns the integer value from the file associated with fptr. It returns the next integer
- ill the input file on success, and EOF on error or end of file.

Pll.4 Program to understand the use of getw() function*/
=:nclude<stdio.h>
-"'in()

FILE * fptr;
int value;
fptr=£open("num.dat", "rb");

while((value=getw(fptr)) !=EOF)
printf("%d\t",value);

fclose(fptrl;

This program will read and print integers from the file "num.dat" which was created earlier.

getw() is used with text files then it will stop reading if integer 26 is present in the file because
in text files end of file is· denoted by ASCII 26 which is also a valid integer value. So getw() should
not be used with text files.

The value of EOF is -1 which is a valid integer value, so this program will work correctly if -1 is not
present in file, if -1 exists in the file then getw() will stop reading and all the values beyond -1 will
be left unread. So we should use feof() to check end of file and ferror() to check error. These functions
are discussed later in this chapter.

- es 341

.9 Integer I/O

1.9.1 putw ()

eclaration: int putw(int value, FILE *fptr)

-' function writes an integer value to the file pointed to by fptr. It returns the integer written to the
- e on success, and EOF on error.
XPll.3 Program. to understand the use of putw() function* /

::nclude<stdio.h>
- in ()

FILE * fptr;
int value;
fptr=fopen("num.dat", "wb");
for(value=1;value<=30;value++)

putw(value~fptr);

fclose(fptr) ;

program will write integers from 1 to 30 into the file "num.dat".

1.9.2 getw()

eclaration: int getw(FILE *fptr);

's function returns the integer value from the file associated with fptr. It returns the next integer
m the input file on success, and EOF on error or end of file.

xpll .4 Program to unders tand the use of getw () funct ion * /
-~nclude<stdio.h>

- in()

FILE *fptr;
int value;
fptr=£open("num.dat", "rb");

while ((value=getw (fptr)) ! =EOF)
printf("%d\t",value);

fclose (fptr) ;

's program will read and print integers from the file "num.dat" which was created earlier.

..: getw() is used with text files then it will stop reading if integer 26 is present in the file because
text files end of file is denoted by ASCII 26 which is also a valid integer value. So getw() should
t be used with text files.

- e val~e of EOF is -1 which is a valid integer value, so this program will work correctly if -1 is not
ent in file, if -1 exists in the file then getw() will stop reading and all the values beyond -1 will

_ left unread. So we should use feof() to check end of file and ferror() to check error. These functions
discussed later in this chapter.

s

342

11.10 String I/O

11.10.1 fputs()

C in Dept"

Declaration: int fputs(const char *str, FILE *fptr);

This function writes the null terminated string pointed to by str to a file. The null character that mark
the end of string is not written to the file. On success it returns the last character written and on erro
it returns EOF.
I *Pli. 5 Program to understand the use of fputs () * I
#include<stdio.h>
main ()
{

FILE *fptr;
char str[80j;
fptr=fopen("test.txt", "w");
printf ("Enter the text \n") ;
printf ("To stop entering, press Ctrl+d in Unix and Ctrl+z in Dos\n")
while (gets (str) ! =NULL)

fputs(str,fptr);
fclose(fptr) ;

Suppose we enter this text after running the program~

Yesterday is history
Tomorrow is mystery
Today is a gift
That's why it is called Present
/''Z

When the first line of text is entered and Enter key is pressed, the function gets() converts the newlil
character to the null character and the array str contains "Yesterday is history"(20 characters +1 m
character). Now str is written to the file testtxt using fputs(). The mill character is not written
the file, so only 20 characters are written.

In previous chapters we had studied about the function puts() that prints the string on the scree
The difference between these two functions is that puts() translates null character to a newline, b
fputs() does not. fputs() will write a newline character to the file only if it is contained in the strin

So after the first line of text newline character is not entered in the file. Immediately after the first lu
of text, the second one is written. In the next program we'll see how to read this file using fgets(

11.10.2 fgets()

Declaration: char *fgets(char *str, int n, FILE *fptr);

This function is used to read characters from a file and these characters are stored in the string pointl

to by str. It reads at most n-1 characters from the file where n is the second argument. fptr is a fi
pointer which points to the file from which characters are read. This function returns the string point
to by str on success, and on error or end of file it returns NULL.

This function reads characters from the file until either a newline or an end of file is encountered
till n-1 characters have been read. It ~ppends a null character ('\0') after the last character read
terminate the string. The following program reads characters from the file testtxt that we had creat

343

_=-_6 Program to understand the use of fgets()*/
=-_de<stdio.h>

.:. _::'E * fptr;
=.::ar str[80];
:_-r=fopen("test.txt". "r");
:...ile (fgets (str. 80. fptr) ! =NULL)

puts(str);
::::lose(fptr) ;

"":L:::rt"
y is historyTomorrow is mysteryToday is a giftThat's· why it is called P

- we call the fgets() function with second argument as 20, then the output would be

y is histor

orow is Myster
_ is a giftTha

it is calle

ent

fgets() was called with se.cond argument as 80, then it read 79 characters from the file and
em in array str and appended a null character. Now str was passed to puts(), so the string

_ displayed on the screen. The function puts() converts the null character of string to a newline,
displaying the string a newline is displayed. In the second iteration of the loop, the function

encounters end of file after reading 6 characters only so it stops reading, stores these characters
appends a null character and displays str on the screen using puts(). When fgetsO was cailed

-econd argument as 20 , then it read 19 characters from the file.

reads characters from the standard input while fgets() reads from a file. The difference between
and gets() is that fgets() does not replace the newline character read by the null character,

ets() does. If fgets() reads a newline, then both newline and null character will be present
final string.

) it may be possible that input is more than the size of array, since C does not check for array .
-~ so an overflow may occur but in fgets() we can limit the size of input with the help of second

nt.

Forniatted I/O
- 'e studied about functions which can output and input characters, integers or strings from files.
-~xt two functions that we are going to study now, can input and output a combination of all of

- - a formatted way. Formatting in files is generally used when there is a need to display data on
or print data in some format.

.1 fprintf ()

fprintf (FILE *fptr, const char *format [, argument, ...]);

344 r in De

This function is same as the printf () function but it writes formatted data into the file instead of
standard output(screen). This function has same parameters as in printf() but it has one additi
parameter which is a pointer of FILE type, that points to the file to which the output is to be w .
It returns the number of characters· output to the file on success, and EOF on error.

/ *Pll. 7 Program to understand the use of fprintf () * /
#include<stdio.h>
main()
{

FILE *fp;
cha:z;: .name[lO];
int age;
fp=fopen (" rec. dat", "w") ;

printf (I' Enter your name and age) ;
scanf("%s%d",name,&age) ;
fprintf(fp,"My name is %s and .aile is %d",name,age);
fclose (fp) ;

/*Pl1.8 Program to understand the use of fprintf() */
#include<stdio.h>
struct student

char name [20] ;
float marks;

}stu;
main()
{

FILE *fp;
int i,n;
fp=fopen("students.dat", "w");
~rintf ("Enter number of records ");
scanf ("%d"; &n);
for(i=l;i<=n;i++)
{

printf ("Enter name and .marks ") ;
scanf("%s%f",stu.name,&stu.m~rks);

fprintf (fp, "%s %f", stu.name, stu.marks);

11.11.2 fscanf ()

Declaration: fscanf (FILE *fptr, const char *format [, address, ...]);

This function is similar to the scanf () function but it reads data from file instead of standard i
so it has one more parameter which is a pointer of FILE type and it points to the file from which
will be read. It returns the number of arguments that were assigned some values on success, and
at the end of file.

In the next program we'll read the file students.dat that we have created using fprintf() in Pl1.8.
that the forrhat string used in fscanf() should be same as the format string used in fprintf() .
writing to the file.

345

?11.9 Program to understand the use of fscanf (* /
~clude<stdio.h>

- ct student

char name [20] ;
float marks;

~= i
-=::l()

FILE *fopen(),*fp;

fp=fopen(~students.dat","r");
printf ("NAME\tMARKS\n");

while(fscanf(fp, "%s%f",stu.name,&stu.marks) !=EOF)
printf("%s\t%f\n",stu.narne,stu.marks) ;

fclose (fp) ;

~ had mentioned earlier that the file pointers stdout and stdin are automatically opened. If we use
e file pointers (n the functions fprintf() and fscanf(), then these function calls become equivalent
rintf() and scanf().

e replace the file pointer fp by stdout then-

fprintf(stdout, "My age is %s" , age); is equivalent to printf("My age is %d", age);

we replace the file pointer fp by stdin then-

fscanf(stdin, "%s%d''', name, &age); is equivalent to scanf("%s%d", name, &age);

.12 Block Read / Write
useful to store blocks of data into file rather than individual elements. Each block has some fixed
it may be a structure or an array. It is easy to read the entire block from file or write tlTe entire

k to the file. There are two useful functions for this purpose- fread() and fwrite(). Although we
read or write any type of data varying from a single character to arrays and structures through
e functions, these are mainly used to read and write structures and arrays.

using these functions, the file is generally opened in binary mode(e.g. "wb", "rb").

.12.1 fwrite()

's function is used for writing an entire block to a given file.

laration: size_t fwrite(const void *ptr, size_t size, size_t n, FILE *fptr);

e t is defined in stdio.h as-

typedef unsigned int size_t ;

is a pointer which points to the block of memory that contains the information to be written to
file, size denotes the length of each item in bytes, n is the number of items to be written to the

e, and fptr is a FILE pointer which points to the file to which the data is written.

"" successful, fwrite() will write n items or total (n * size) bytes to the file and will return n. On
or or end of file it will return a number less than n.

-0 write a single float value contained in variable fval to the file

346 C in Depth

fwrite(&fval, sizeof(float), 1, fp);

To write an array of integers arr[10] to the file.

fwrite(arr, sizeof(arr), 1, fp);

To write only first 5 elements from the above array to the file

fwrite(arr, sizeof(int), 5, fp);

Note that here in third argument we'll sen.d size of integer, because here the items that we are writing
are integers not array.

To write a structure variable w~ich is defined as

struct record { \

char nam~[20];

int roll;

float_marks;

}student;

fwrite(&student,sizeof(student),l,fp);

This will write a single structure variable to the file.

To write an array of structures

Suppose stu_arr[200] is an array of structure defined above-

fwrite(stu_arr, sizeof(stu_arr), 1, fp);

Here it will write all the 200 elements of array stu_arr to the' file.

To write only a part of an array of structure

Suppose in the above array stu[200] we have entered records of only 100 students then it is no use
writing whole array to the file(garbage value will be written).We can write 100 records as-

fwrite(stu_arr, sizeof(struct record), 100, fp);

We have used-sizeof operator instead of sending the size directly, so that our program becomes portable
because the size of data types may vary on different computers. Moreover if new elements are adde<i
to our structure, we need not recalculate and change the size in our program.

/*Pll.10 Program to understand the use of fwrite()*/
#include<stdio.h>
struct record

char name [20] ;
_int roll;
float marks;

}student;
main ()
{

int i,n;
FILE *fp;
fp=fopen (" stu. dat", "wb")_;
if (fp==NULL)

-iJes

printf("Error in opening file\n");
exit(l) ;

}

printf ("Enter number of records ") ;
scanf ("%d", &n);
for (i=O; i<n; i+,+)
{

printf ("Enter name ") ;
scanf("%s".student.name) ;
printf ("Enter roll no ") ;
scanf("%d".&student.roll);
printf ("Enter marks ") ;
scanf("%f".&student.marks);
fwrite(&student.sizeof(stude~t),l.fp);

}

fclose(fp) ;

1.12.2 fread()
's function is used to read an entire block from a given file.

_ laration: size_t fread(void *ptr, size_t size, size_t n, FILE *fptr);

ptr is a pointer which points to the block of memory which receives the data read from the file
is the length of each item in bytes, n is the number of items to be read from the file and fptr is

- e pointer which points to the file from which data is read.

success it reads n items from the file and returns n, if error or end of file occurs then it returns
alue less than n. We can use feof() and ferror() to check these conditions.

read a single float value from the file and store it in variable fval.

fread(&fval, sizeof(float), I, fp);

read array of integers from file and store them in array arr[10].

fread(an, sizeof(arr), I, fp);

read 5 integers from file and store them in first five elements of array arr[10]

fread(arr, sizeof(int), 5, fp);

read a structure variable that is defined as

ct record{

char name[20];

int roll;

float marks;

}student;

(&student,sizeof(student),1 ,fp);

will read a single structure variable from the file and store it in variable stud,nt.

~48

To read an array of structures

Suppose stu_arr[200] is an array of structure defined above.

fread(stu_arr, sizeof(stu_arr), 1, fp);

Here it will read an array of structu'r~s from file and store it in stu_~;r.

To read 100 records from file and 'store them in first 100 structures nf stu_arr[200].

fread(stu_arr, sizeof(struct record), 100, fp);

The following program reads the file stu.dat created in PI1.IO.
/ *Pll.ll Program to unaerstand the use of fread () * /
#include<st4io.h>
struct record

char name [2 0] ;
int roll;
float marks;

}student;
main()
{

FILE *fp;
fp=fopen("stu.dat", Orb");
if (fp==NULL)
{

printf("Error in opening file\n");
exi t (1) ;

}

printf("\nNAME\tROLLNO\tMARKS\n");
while(fread(&student,sizeof(student) ,l,fp)==l)
{

printf("%s\t",student.name) ;
printf("%d\t",student.roli) ;
printf("%f\n",student.marks) ;

}

fclose(fp) ;

C in Depth

I

The fread() function returns the number of records successfully read, so it will return 1 till there
records in the file and will return a number less than 1 when there will be no records in the file.
we have used this condition in our while loop to stop reading when end of file is reached.

11'.13 Random Access To File
We can access the data stored in the file in two ways, sequentially or randomly. So far we have
only sequential access in our programs. For example if we want to access the forty-fourth record th
first fortycthree records should be read sequentially to reach the forty-f~urth record. In random acc

- data can be accessed and processed randomly i.e. in this case the forty-fourth record can be acce
directly. There is no need to read each record sequentially, if we want to access a particular rec
Random access takes less time than the sequential access.

C supports these functions for random access file processing-
-fseek()

349 ~I

-n()
wind()

_ tudying these functions it is necessary to understand the concept of file position pointer. File
-=..."...... pointer points to a particular byte in the file and all read and write operations on the file take

this byte. This pointer automatically moves forward when a read or write operation takes place.
s the data randomly, we'll have to take control of this position pointer.

.1 fseek ()
_ ction is used for setting the file position pointer at the specified byte:

_-.. .. tion: int fseek(FILE *fp,. long displacement, int origin);

is a file pointer, displacement is a long integer which can be positive or negative and it denotes
ber of bytes which are skipped backward (if negative,) or forward (if positive) from the

en specified in the third argument. This argument is declared as long integer so that it is possible
e in largefil"es.

- . d argument named origin is the position relative to which the displacement takes place. It can
ne of these three values.

Constant Value Position

SEEK SET 0 Beginning of file
SEEK CURRENT 1 Current position

SEEK END 2 End of file

~ three constants are defined in stdio.h so we can either use these names or their values.

examples of usage of fseek() function are
fseek (p, lOt, 0);

Origin is 0, w1?-ich means that displacement will be relative to beginning of file so position pointer
- skipped 10 bytes forward from the beginning of the file. Since the second argument is a long
integer, so L is attached with it.

fseek (p, 5L , 1);

Position pointer is skipped 5 bytes forward from the current position.
fseek (p, 8L , SEEK_SET);

Position pointer is skipped 8 bytes forward from the beginning of file.
fseek (p , -5L , 1);

Position pointer is skipped 5 bytes backward from the current position.
fseek (p, OL , 2);

Origin is 2 which represents end of fi.le and displacement is 0 which means that 0 bytes are skipped
from end of file. So after this statement position pointer will point to the end of file.

fseek(p, -6L, SEEK_END);

Position pointer is skipped 6 bytes backward from the end of file.

fseek (p, OL , 0);

This means 0 bytes are skipped from the beginning of file. After this statement position pointer
points to the beginning of file.

On success fseek() returns the value 0, and on failure it returns a non-zero value. Consider the
stu.dat that we had created earlier in program P11.10. In the next program we'll be able to read a partie
number of record randomly from the file with the help of fseek() function.

350 C in De

/ *Pll.12 Program to understand the use of fseek () * /
#include<stdio.h>
struct record

char name [20] ;
int roll;
float marks;

)student;
main()
{

int n;
FILE *fp;
fp=fopen (" stu. dat", "rb") ;
if (fp==NULL)
{

printf("Error in opening file\n");
exi t (1) ;

}

printf ("Enter 'the record number to be read ") ;
scanf ("%d", &n);
fseek(fp, (n-l)*sizeof(student),O); /*skip n-l records*/
fread(&student,sizeof(student),l;fp); /*Read the nth record*/
printf("%s\t",student.name) ;

'printf("%d\t",student.roll);
printf("%f\n",student.ma~ks);
fclose(fp) ;

Suppose we want to read the 5th record from the file, i.e. n=5. We'll skip first 4 records and p
our position pointer at the beginning of the 5th record, so now fread() will read the 5th recor
general if we want to read the nth record we'll skip n-l records with fseek() and place the posi
pointer at the beginning of the nth record.

11.13.2 ftell()

Declaration: long ftell(FILE *fptr);

This function returns the current position of the file position pointer. The vah:e is counted from
beginning of the file. .

/* Pll.13 Program to understand the use 'offtell()*/
#include<stdio.h>
struct record

char name [20] ;
int roll;
float marks;

}student;

?ILE * fp;
~p=fopenl"stu.dat","rb");
:'flfp==NULL)
{

printfl"Error in opening file\n");
exi til) ; .

}

printf I" position pointer in the beginning -> %ld\n", ftell I fp)) ;
whilelfreadl&student,sizeoflstudent) ,l,fp)==l)

printf I "Posi-tion pointer -> %ld\n", ftell Ifp));
printfl"%s\t",student.name);
printfl"%d\t",student.roll) f
printfl"%f\n",student.marks) ;

}

printf I "Si.ze of file in bytes is %ld\n", ftell Ifp));
fcloselfp) ;

351

or ftell() returns -1 L and sets errno to a positive value.

3.3 rewind()

ration: rewind(FILE *fptr);

function is used to move the file position pointer to the beginning of the file. Here fptr is a pointer .
\ . .

E type. The function rewind() is useful when we open a file for update.

g rewind(fptr) is equivalent to fseek(fptr, OL, 0):

?11.14 Program. to understand the use of rewind I) * /
~_ ude<stdio.h>

-..., (

?ILE *fp;
!p=fopenl"stu.dat", "rb+");

printf I "Error in opening file\n");
exitll) ;

printf I "position pointer ->%ld\n", ftell Ifp));
fseeklfp,O,2) ;
printf I "position pointer ;->%ld\n", ftell Ifp));
rewind I fp) ;
printf ("Position pointer -'->%ld\n", ftell Ifp));
::closelfp) ;

we'll write some programs to perform various operations on the file' stu.dat.
'=:1.15 Program to append records to a file* /

. , 352

#include<stdio.h>
main ()
{

struct record

char name [201 ;
int roll;
float marks;

}student;
FILE *fp;
intchoice=l;
fp=fopen("stu.dat", "ab");/*opened in append mode */
if (fp==NULL)
{

printf ("Error in opening file\n");
exi t (1) ;

}

while(choice==l)
{

C in Del

printf ("Enter name': ") ;
scanf("%s",student.name) ;
printf ("Enter roll no ") ;
scanf("%d",&student.r91l) ;
printf ("Enter marks ") ;
scanf("%f",&student.marks) ;
fwrite(&student,sizeof(studeht) ,l,fp);
printf("Want to enter more?(l for yes/O for np) ");
scanf ("%d", &choice);

}

fclose (fp) ;

/ *Pll. 16 Program to read records from a file and calculate grade of ec
student and display it

grade A

B

C

if
if
if

marks
marks
marks

. >= 80
>= 60
< 60

and < 80

*/

#include<stdio.h>
main()
{

struct record

char name [201 ;
int roll;
float marks;

}student;
FILE *fp;
char grade;
fp=fopen("stu.dat"; "rb");/*opened in read mode*/

353

=.=(fp==NULL)

printf("Error in opening file\n");
exit(1);

;::rintf("\nNAME\t\tMARKS\t\tGRADE\n\ri") ;
• ile(fread(&stud~nt,sizeof(student) ,l,fp)==1)

printf("~s\t\t",student.name);

printf("%2.2f\t\t",student.marks);
if(student.marks>=80)

printf (, "A\n") ;
else if (student. marks>=60)

printf ("B\n");
else

printf ("C\n") ;

__ ose (fp) ;

_:.17 Program to modify records in a file*/
:. de<stdio. h>

)

.::=ruct record

char' name [20] ;
int roll;
float marks;

- udent;
E * fp;

==-ar name [20] ; .
:-:lg ~lize=sizeof(student);
-=signed flag=O;
'::'_=fopen("stu.dat", "rb+");
:.':: (fp==NULL)

printf("Error in opening file\n");
exit (l) ;

-==·ntf("Enter·name of student whose record is to be modified ");
5=anf("%s",name) ;

~le(fread(&student,sizeof(student) ,1,fp)==1)
if(strcmp(student.name,name)==O)
{

printf ("Enter new data -->\n~"J;

printf ("Enter name ") ;
scanf("%s",student.name) ;
printf("Enter roll no ");
scanf("%d",&student.~oll);

354

printf ("Enter marks ") ;
scanf("%f",&student.marks);
fseek(fp,-size,l); \
fwrite(&student,sizeof(student) ,l,fp);
flag=l;
break;

}

if (flag==O)
printf ("Name not found in file\n");

else
printf (" Record Modified \n") ;

fclose(fp);

C in Depth

}

For modifying records we have opened the file stu.dat in update(rb+) mode. We'll read all the records
one by one with the help of fread(), and as soon as the name of the student matches with the name
we've entered for mbdificat(on, we'll enter new data for the student, and write that data to the file
Before fwrite() we have used fseek() to skip one record backwards because while reading we've reacheo
the end of the record which is to be modified, i.e. position pointer is at the beginning of next record
so if we write new data without using fseek() then it will be written over the next record. After modifyin!
the data we'll stop reading and come out of the while loop with the help of break statement.

/ *Pll.18 Program to delete a· record from 'the file* /
#include<stdio.h>
main ()
{

struct record
{

char name [20] ;
int roll;
float marks;

}student;
FILE *fp, *fptmp;
char name [20] ;
unsigned flag=O;
fp=fopen("stu.dat", "rb");
if (fp==NULL)
{

printf ("Error in opening file\n");
exit(l) ;

printf ("Enter' the naIl)e to be deleted ");
scanf("%s",name) ;
fptmp=fopen("tempfile.dat", "wb");
while(fread(&student,sizeof(student),l,fp)==l)
{

if (strcmp(name,student.name) !=O)
fwrite(&student,sizeof(student) i1"fptmp);

else
flag=l;

355

fclose(fp);
fclose(fptmp) ;
remove("stu.dat") ;
rename("tempfile.dat", "stu.dat");
if (flag==O)

printf ("Name not found in file\n");
else

printf ("Record deleted \n") ;

deleting a record from stu.dat we'll make a temporary file tempfile.dat and copy all the records
mat file, except the record to be deleted, and then we'll delete the original stu.dat file and rename'

file.dat to stu.dat file. The macro remove() is used for deleting a file and function rename(),' is
to rename a file.

Pll.19 Program to display the records in sorted order, sorting is performed
ascending order w. r. t. name* /

=£nclude<stdio.h>
in()

struct record

char name[20];
int roll;
float' marks;

}student,temp,stu[50] ;
FILE *fp;
int i,j,k=O;
fp=fop.en("stu.dat"("rb");/*opened in read mode*/
if (fp==NULL)
{

printf("Error in opening file\n");
exi t (1) ;

},

while(fread(&student,sizeof(student),l,fp)==l)
stu[k++]=student;

/ *Bubble sort * /

for(i=O;i<k;i++)

for(j=O;j<k-l-i;j++)
{

if (strcmp (stu [j] . name, stu [j +1] . name) >0)
{

temrstu [j] ;
stu[j]=stu[j+l] ;
stu[j+1J?emp;

}

printf("\nNAME\t\tROLLNO\t\tMARKS\n\n") ;

\

356

for(i=O;i<k;i++)
{

pr in t f (" %s \ t \ t " , stu [i) . name) ;
printf("%d\t\t",stu[i).ro11);
printf ("%f\n", stufi) .marks);

C in Depth

>' }
fc10se (fp) ; .

. ~ere we have read all the records fro~the file into an array and then we have sorted that array b:
bubble sort. After sorting we have displayed the sorted array on the screen. Note that the records it:
the file stu.dat are in.their original unsorted form. If we want the records in the file to become sorted,
then we should rewind the file and then write the sorted array to the file with the help of fwrite(
like this-

rewind(fp);

fwrite(stu, sizeof(stude~t), k, fp);

In this case file stu.dat should be opened in update mode. We may also~write the sorted records t
another file. Now we'll see how to sort on more than one key. Suppose name is primary key and marks
is taken as secondary key, and sorting is to be done in ascending order w.r. t. name and in qescending
order w.r.t. marks.
for(i=O;i<k;i++)
{

for(j=O;j<k-l-i;j++)
{

if(strcmp(stu[j) .name,stu[j+l) .name»O)
{

temp=stu[j) ;
stu[j)=stu[j+l) ;
stu[j+l)=temp; \

}

91se if(strcmp(stu[j) .name,stu[j+l) .name)==O)
i f (stu [j). rna r k s <stu [j] . marks)
{

temp=stu[j);
stu[j]=stu[j+l) ;
stu[j+l)=temp;

}

} / *End of inner for loop* /
} / *End of outer. for loop* /

Now we'll write a program to merge two files that are sorted on the same key, such that the merg
file is also sorted on the same key. The logic is somewhat similar to the merging of arrays that \l,

had done in chapter 7.

Create two files named sec.tionA.dat .and sectionB.dat using program PIl.I O. The records in these rn
files should be in descending order w.r.t marks. So either you can enter the records in sorted ord
or you may sort the fi!eafter entering the records. The program given next merges these two so
files into a third sorted file. The merged file is named merged.dat and it contains all the records
sectionAdai ?nd sectionB.dat in descending order w.r.t marks. Thi.s file can be read using progr

_-ues

C>11.11.
Pll.20 Program to merge two files /
include<stdio.h>

- ruct record

char name [20] :
int roll:
float marks:

}stul,stu2:
in ()

FILE *fpl, *fp2, *fp3:
int i,j:
if((fpl=fopen("sectionA.dat", "rb"»==NULL)
{

printf ("Error in opening file\n"):
exi t (l) :

}

if((fp2=fopen("sectionB.dat", Orb"))==NULL)
{

printf ("Error in opening file\n"):
exit(l) :

}

if ((fp3=fopen ("merged. dat" , "wb")) ==NULL)
(

printf("Error in opening file\n"):
exi t (1) :

}

i=fread(&stul,sizeof(stul),l,fpl):
j=fread(&stu2,sizeof(stu2),1,fp2):
while((i==l)&&(j==l»
(

if(stul.marks>stu2.marks)
{

fwrite(&stul,sizeof(stul) ,1,fp3):
i=fread(&stul,sizeof(stul),l,fpl):

}

else

fwrite(&stu2,sizeof(stu2) ,1,fp3):
j=fread(&stu2,sizeof(stu2) ,1,fp2):

357

}

while(i==l) /*Write remaining records of sectionA.dat into mer~At'l.oat*/

(

fwrite(&stul,sizeof(stul) ,1,fp3):
i=fread(&stul,sizeof(stul) ,l,fpl):

}

while(j==l)/*Write remaining records of sectionB.dat into merged.dat*/
{

f wr i t e (&stu1 , s i z e 0 f (stu1) , 1,-f p 3) :

358

j=fread(&stu2.~izeof(stu2).1.fp2) ;
}

fc1ose(fpl) ;
fclose(fp2) ;
fclose(fp3) ;

C in Depth

The next program is a menu driven program in which we manage a database of books. All the operations
that we have studied till now have been combined in this single program.

I*P11. 21 Write a program to manage a database of books* I
#include<stdlo.h>
#include<string.h>
void insert(FILE *fp);
void del(FILE *fp);
void modify(FILE *fp);
void booksold(FILE *(p);
int search(FILE *fp •. char *name);
void display(FILE *fp);
void list (FILE *fp);
struct {

main(
{

char name [50] ;
int ncopies;
float cost;

}book;
)

int .choice;
FILE *fp;
fp=fopen ("books. dat". "rb+") ;
if (fp==NULL)
{

./ fp=fopen ("books. dat". "wb+") ;
if (fp==NULL)
{

puts ("Error in opening f{le\n");
exit(l) ;

}

while(l)
{

printf(1.Insert a new record\n");
printf(2.Delete a record\n");
printf (3. Display record of a book\n");
printf (4.Modify an existing record\n");
printf(5.List all records\n");
printf (6 Book sold\n");
prin'tf (7 .Exit\n");
print f (Enter your choice ") ;
sCanf("%d",&choice) ;

switch(choice)

Files~ 359

case 1:
insert (fp) ;
break;

case 2:
del(fp) ;
break;

case 3:
disp1ay(fp) ;
break;

case 4:
modify (fp) ;
break;

case 5:
list (fp) ;
break;

case _6-y
bookso1d(fp) ;
break;

case 7:
fclose(fp) ;
exit (1) ;

default
printf ("Wrong choice\n");

}/*End of switch *1
} 1 *End of while* 1

}/*End of main()*1

void insert(FILE *fp)

fseek(fp,O,2) ;
printf ("Enter book name ") ;
scanf("%s",book.name);
print f ("Enter number of copies ") ;
scanf ("%d" ,&·book. ncopies) ;
printf ("Enter cost of book ");
scanf("%f",&book.cost) ;
fwrite(&book,sizeof(book) ,l,fp);

}/*End of insert()*1

void del (FILE *fp)

FILE * fptmp;
char name [2 0] ;
printf (" Enter' the name of book to be deleted from database ") ;
scanf("%s",name) ;
if(search(fp,name)==O)

return;
fptmp=fopen("tempfile.dat", "wb");
rewind (fp) ;
while (fread (&book, sizeof-(book) ,1, fp) ==1)

360

if (strcmp(name,book.name) !=O)
fwrite(&book,sizeof(book) ,l,fptmp);

}

fclose(fp) ;
fclose(fptmp) ;
remove("books.dat") ;
rename("tempfile.dat", "books.dat");
print f ("\nRecord deleted \n \n") ;
fp=fopen ("books. dat", "rb+");

}/*End ofdel()*/

void modify(FILE *fp)
{

char name [50];
long size=sizeof (book) ;
printf("Enter the name of· the book to be modified ");
scanf("%s",name) ;
if(search(fp;name)==l)
{

printf ("Enter new data-->\n\n");
printf("Enter book name ");
scanf("%s",book.name); .
printf ("Enter number of copies ") ;
s~anf("%d",&book.ncopies);

printf ("Enter cost of book ") ;
scanf("%f",&book.cost);
fseek(fp,-size,l) ;
fwrite(&book,sizeof(book) ,l,fp);
printf ("\nRecord successfully modified\n \n") ;

}

}/*End of modify() */

void booksold (FILE *fp)
{

C in Depth

· .
"

char name [50];
long size=sizeof (book) ;
printf (" Enter the name of the book to be sold
scanf("%s",name);
if(search(fp,name)==l)
{

if(book.ncopies>O)
{

II) ;

book.ncopies--;
fseek(fp,-size,l).;
fwrite(&book,sizeof(book) ,l,fp);
printf ("One book sold\n");
printf ("Now number of copies %d \n" , book. ncopies) ;

}

else
printf ("Book is out of stock\n\n");

-~ 361

}

*End of booksold () * /

id display(FILE *fp)

char name[50);
printf("Enter the name of the book ");
scanf("%s",name) ;
search(fp,name) ;
printf("\nName\t%s\n",book.name) ;
~rintf("Copies\t%d\n",book.ncopies) ;
printf("Co~t\t%f\n\n",book.cost) ;

·/*End of display() */.
- t search(FILE *fp,char *name)

unsigned flag=O;
rewind (fp) ;

while(fread(&book,sizeof(book) ,l,fp)==l)
(

if(strcmp(name,book.name)==O)
(

flag=l;
break;

if (flag==O)
printf("\nName not found in file\n\n");

return flag;
/*End of search()*/

oid list(FILE *fp)
{

rewind (fp) ;
printf("\nNAME\tCOPIES\t\tCOST\n\n");
while(fread(&book,sizeof(book) ,l,fp)==l)
(

printf("%s\t",book.name) ;
printf ("%d\t\t" ,book.ncopies);
printf("%f\n",book.cost) ;

}

printf (" \n") ;
} / *End 0 f "1 i s t () * /

We haveopened the file books.dat inupdate(rb+) mode. If the file doesn't exist then fopen() will return
~LL, so we'll create the file by opening in "wb+" mode. So first time when we'll run this program,
file will be opened in "wb+" mode. The operations permitted in "wb+" mode and "rb+" mode are same
but the problem with "rb+" mode is that it can't create a file and with "wb+" mode is that it erases
the contents of the file each time file is opened.

'"

362 C in Depth

The function insert() is simple, we place the position pointer at the end of file by fseek() and then
insert a new record there.

The function search() searches for a record in the file, and if .the record does not exist then it displays
a message and returns O. If the record exists then the position pointer is placed at the end of the record,
which was searched and the function returns 1. Before starting our search we have called rewind()
function so that searc~ starts from the beginning of the file. This function search() 'is used in dele
), modify, booksold() and display() functions.

The dele) function first calls search(), and if the record doesn't exist we return from the function.
Otherwise the record is deleted using a temporary file as we have seen earlier. At the end of dele)
function the file books:dat is opened in "rb+" mode because this file was closed by this function, and
it is the respoI\sibility of this function to open the file in "rb+" before returning to main menu and
performing any other operation.

The function modify() is simple. The function booksold() searches for the book to be sold and it
reduces the number of copies by 1. If the number of copies is 0 then it displays the message that book
is out »fSfock. For reducing number of copies we have written book.ncopies--. We could write this
because book is a global variable and after calling search() it contains the record of the book to be
sold.

The function display() searches for a particular record and displays its details on the screen while the
function list() displays the details of the a.1l the books on the screen.

11.14 Other File Functions

11.14.1 fcof()

So far we have used the return value ofthe function to detect the end of file while reading. For example
fgetc(), getc(), getw(), fprintf() return EOF and fgets() returns NULL on end of file. But these
functions return the same value both on end of file and on error. So if a function stops reading we
can't make out whether the end of file was reached or an error was encountered. We can check ~eparatel

for these two conditions with the help of ferror() and feof()..

Declaration: int feof(FILE *fptr);

The macro feof() is used to check the end of file condition. It returns a nonzero value· if end of file
has been reached otherwise it returns zero.

. In the program Pll.ll we could have used feof() function to read the file.
fread(&student,sizeof(student) ,l,fp);
while(lfeof(fp))
(

printf("%s\t",student.name) ;
printf("%d\t",student.roll);
printf("%f\n",student.marks);
fread(&student,sizeof(student) ,l,fp);

Let us see what would happen if we write the above code like this
while(lfeof(fp))
{

fread(&studen~,sizeof(student) ,l,fp);
printf("%s\t",sttident.name) ;

- es

printfl"%d\t",studeat.roll) ;
printfl"%f\n",student.marks);

363

this case, the last record of the program may be processed twice, since iIi C end of file is indicated
y after an input function has made an attempt to read at the end of file.

1.14.2 ferror()

Declaration: int ferror(FILE *fptr);

The macro ferror() is used for detecting any error occurred during read or write operations on a file.
returns a nonzero value if an error occurs i.e. if the error indicator for that file is set, otherwise
returns zero.

I*Pll.22 Program to understand the use of ferror I) * /
-include<stdio.h>
ain I)

{

FILE * fptr;
int Chi
fptr=fopenl "test", "w");

ch=getc I fptr) ;
if Iferrorlfptr»
{

printfl"Error in read operation\n");
exi tIl) ;

}

else
printf I" %c", chI ;

fcloselfptr);
}

Output:

Error in read operation

Here the file is opened in write mode and an attempt is made to read from the file, this gives an error
which is detected by ferror().

Generally the return value of the input function is checked to stop reading from the file. Almost all input
functions return same value on end of file and on error, so to distinguish between these two cases,
the functions feof() and ferror() are used.
/ *Pll. 23 Program to understa,nd the use of feof I) and ferror () * /
#include<stdio.h>
main I)
{

FILE * fptr-;
int Chi
i~1 (fptr=fopenl"myfile.c", Or"))==NULL)
{

pnIl,tfl"File doe,sn't exist\n");
exit(I);' - "

}

else

364

while((ch=getc(fptr)) !=EOF)
printf("%c",ch) ;

}

if (feof (fptr))
printf ("End of file\n");

if(ferror(fptr))
printf("Error\n") ;

fclose (fptr) ;

11.14.3 clearerr()

Declaration: void clearerr(FILE *fptr);

This function is used to set the end of file and error indicators to O.
/*Pll.24 Function to understand the use of clearerr()*/
#include<stdio.h>
main ()
{

FILE * fptr;
int Chi
fptr=fopen(" test", "w") ;
ch=getc (fptr) ;
if(ferror(fptr))
{

printf("Error in read operation\n");
clearerr(fptr) ;

} .

fclose(fptr) ;

11.14.4 perror()

C in Depth

Declaration: void perror(const char *str);

This function is used to display a message supplied by the user along with the error message generated
by the system. It prints the argument str, then a colon, then the message related to the current value
of ermo, and then a newline. ermo is a global variable which is set to a particular value whenever an
error occurs. The use of this furiction can be understood by reading the next program Pll.25.

11.14.5 rename()
,

Declaration: int rename(const char *oldname, const char *newname);

This function lis used to rename a file. We can give full path also in the argument, but the drives shouid
be the same although directories may differ. On success it returns 0 and on error it returns -1 and
errno is set to one of these values-

ENOENT . No such file or directory
EACCES Permission denied
ENOTSAM Not same device

365

?11.25 Program to understand the use of rename ()*/

-bclude <stdio .h>
=:'0 ()

char old_name [80] , new_name [80] ;
printf ("Enter- the name ?f file to be renamed II) ;
gets (old_name) ;
printf("Enter a new name for the file ");
gets (new_name) ;
if (rename (old_name, new_name) ==0)

printf (II File %s renamed to %$ \n ", old_name, new_name);'
else

perror (II File not rena¥!ed");

ase we give a filename whIch does not exist then value of ermo will be set to ENOENT and the
age displayed by perror will be-

- e not renamed: No such file or directory

.14.6 unlink()

laration: int unliIlk(const char *filename); .

_. function is used for deleting a file from the directory. We can give full pathname also as the argument.
file should be closed before deleting. On success it returns 0 and on error it returns -I and erma

- set to one of these values-

ENOENT Path or file name not found

EACCES Permission denied

"PII.26 'Program to understand the use of!' unlink () * /
-:nclude<stdio.h>

in ()

FILE * fptr;
char name [15] ;
printf("Enter the file name:");
scanf("%s",name) ;
fptr=fopen(name," r ") ;
fclose.(fptr) ;

if(unlink(name)==O)
printf (IIFile %s

else
perror (II File' not

1.14.7 remove()

is deleted\n",name);

deleted ") ;

eCiaration: int remove(const char *filename);

:-emave is a macro that deletes ,a file from the directory. It is similar t6 the function unlink().

366 C in Depth

11.14.8 fflush()

Declaration: int fflush(FILE *fptr);

This function writes any buffered unwritten output to the file associated with fptr. The file IS not closed
after call to ffiush(). On success it returns 0 and on error it returns E9F. If we call this function
with stderr, then all the unwritten buffered error messages will. be written.

fflush (stderr);

To flush all output streams we can write-

ffiush(NULL);

Although ffiush() is defined for output streams only, but in some compilers ffiush() can be used with
stdin to discard unread characters on standard input. For example consider this situation-

printf("Enter an integer: ");

scanf("%d", &i);
printf("Enter a character : ");

scanf("%c", &ch);

After entering the integer, we press Enter key so that tbe first scanf() terminates. The integer value
is read by the scanf() but the newline character(ASCII 10) is still in the input buffer. So the next
scanf() reads this newline character in the variable ch, and terminates even before user enters any
character. Similar type of problem may occur-when we use gets() after scanf(), since gets() terminates
when it finds a newline character. To avoid such problems we can use fflush(stdin) to discard an
unread characters. For example-

printf("Enter an integer: ");

scanf("%d", &i);
printf("Enter a character: ");

fflush(stdin);

scanf("%c", &ch);

Nute that fnu~h(~tdin) i;> not portable, it =ight not work on every compiler.

11.14.9 tmpfile()

Declaration: FILE *tmpfile(void);

tmpfile() creates a temporary binary file and opens it in "wb+" mode. On success it returns a pointer
of type FILE that points to the temporary file and on error it returns NULL. The file created By tmpfile(
) is temporary because it is automatically deleted when closed or when th~ program terminates.

14.11.10 tmpnam()

Declaration: char *tmpnam(char str[L_tmpnam]);

This function is used to generate a unique name for a file. The argurrient str can be NULL or an arra
of minimum L_tmpnam characters. If str is NULL then tmpnam() stores the temporary file name in
a internal static array and returns a pointer to that array. If str is not NULL, then tmpnam() stores
the temporary file name in str and returns str. The number o(different file names that can be gener~ted

by tmpnam() during the execution of program is specified by TMP_MAX, w1).ich is defined in stdio.h
file. Note that tmpnam() only creates a file name, it does not create the file. A file withthe nam:e generated
by tmpnam() can be opened using fopen(), and it should be closed using fclose().

367

1.11 freopen()
ration: FILE *freopen(const char *filename, const char *mode, FILE *fptr);

function is used to associate a new file with a file pointer. The file associated with 'fptr is closed
.' fclose(), after that the filename that is specified in the first argument is opened in the specified

as by fopen(), and this fptr is now associated with this file. On success freopen() returns fptr,
- on error it returns NULL. .

function is generally used to change the files associated with file pointers stdin, stdout and stderr.
example the file pointer stderr is associated with the screen, if we want to store the error messages
file instead of displaying them on the screen, then we can use freopen() as-

freopen(i'errorfile", "a", stderr);

. 5 Command Line Arguments

function maine) can accept two parameters. The definition of maine) when it accepts parameters
e written as-
(int argc, char *argv C])

first parameter is of type int and the second one is an array of pointers to strings. These parameters
_ onventionally named argc(argument counter) and argv(argument vector), and are used to access

arguments supplied at the command prompt. Let us see how this is done.

program is compiled and executable file is created. In DOS, name of the executable file is saine
e name of the program and it has a .exe extension. In UNIX, the executable file is named as a.out.

_ can give. any other name to the executable me in UNIX using -0 option as-

cc -0 myprog myprog.c

_ ' the program is executed at the command prompt, and arguments are supplied to it. The first
ent is always the name of executable file. The parameters argc and argv can be used to access

omrnand line arguments. The parameter argc represents the number of arguments on command
. All the arguments supplied at the command line are stored internally as strings and their addresses
stored in the array of pointers named argv.

_11.27 Program to understand command line arguments * /
-=clude<stdio.h>
-~ n (int argc, c.har * argv [])

int i;
printf("argc=%d\n",argc) ;
for(i=O;i<argc;i++)

printf("argv[%d]=%s\n",i;argv[i]);

_ pose the name of the program is myprog.c and it is executed on the command prompt as

myprog you r 2 good

variable argc will have value 5, since total five arguments are supplied at the command prompt.
first argument is the name of the progral"!1, so argv[O] points to the base address of string "myprog"

368 C in DeptJ

(it might contain the whole path of the file). Similarly argv[l] points to the base address of string "you'
argv[2] points the base address of string "r", argv[3] points to the base address of string "2", argv[t
points to the base address of string "good".

The output will be :
argc = 5
argv[O] = myprog
argv[1] = you

arg:v[2] = r
argv[3] ;= 2

argv[4] = good

Note that each argument is stored as a string, so argv[3] does not represent the integer 2 but it i!
pointer to string "2". If we want to use it as an integer in the program then we we'll have to cony
it to an integer using function atoi().

. !

11.16 Some ~dditional Problems

Problem 1

Write a program that copies a file to another file. The names of two files should be sent as comm:
line arguments. .
/*Pll.28 Program to copy a file to another* /
#include<stdio.h>
main (int argc, char *argv [])

FILE * source, *dest, * fopen () ;
int c;
if(argc!=3)
{

printf ("Wrong number of arguments\n");
exi t (1) ;

}

if((source=fopen(argv[l], "r"»==NULL)
{

printf(U Can't open source file\n");
exit(l) ;

}

if((dest=fopen(argv[2], "w"))==NULL)
{

printf (" Can't open destination file\n");
exi t (1) ;

}

while((ch=fgetc(source» !=EOF)
fputc(dest,c) ;

fclose(source) ;
fclose(dest) ;

In this program, first we've checked the number of command line arguments using argc, it is a
practice to do so.

369

roblem 2

-rite a program to remove all comment lines from a syntax error free C source program.·
Pll.29"/

=~nclude<stdio.h>

=ain()

FILE *fpl,*fp2;
char name [50] ;
int cl,c2,found='n';
printf ("Enter the file name ");
scanf("%s",name) ;

if((fpl=fopen(name, "r"))==NULL)
{

printf ("Error in opening file\n");
exi t () ;

ep2=fopen("c:\\new.c", "w");
cl=fgetc(fpl);
c2=fgetc(fpl) ;

while(c2!=EOF)
{

if(cl=='/'&&c2=='*')
found=' y' ;

if(found=='n')
fputc(cl,fp2) ;

if (cl==' *' &&c2==' /')
{

found= 'n' ;
c2=fgetc(fpl) ;

cl=c2;
c2=fgetc(fpl) ;

}

fclose(fpl) ;
fclose(fp2) ;

.Toblem 3

rite a program to count the number of words in a text file. Assume that a word ends with a space,
<ab, newline, comma, fullstop, semicolon, colon, hyphen.
Pll.30 Program to count the number of words/

-include<stdio.h>
=include<stdlib.h>
:::.ain ()

char line[81];

370

int i, count=O;
FILE * fptr;
if((fptr=fopen("test.txt", "r"II==NULLI
{

printf ("File doesn ' t exist\n" I;
exit(l) ;

}

while.((fgets (line, 81, fptrl I ! =NULLI
{

for (i=O; line [i] ! = I \ 0 '; i++ I
if(is_end(line[i]1 I

count++;
}

printf ("Number of words in the file
fclose(fptrl;

}

is_end (int chI
{

%d\n",countl;

C in Depth

switch(chl
{

case '\n' : case '\t ' :

case I ; I : case , - I :

return l',

return 0;

case I. case I. case , . case I. I •

",

This is a simple program that counts the words in a text file, by counting the characters that terminate
a word. This program may give incorrect output in some cases, let us consider those cases and modify
the program accordingly.

If the file contains two or more adjacent terminating characters, then the output will be wreng. For
example there are two or more adjacent spaces or a full stop followed by a space or a newline. In
this case we can modify the if condition as-

if (is_end(1ine[i]) && !is_end(1ine[i-l]))

If there are two or more adjacent newline characters(blank lines) in the file then in spite of the modified
if condition the output will be wrong. This is because fgets() stops reading when it encounters a newline
character. So we can place this condition in the beginning of while loop.

if (line[O] = = '\n')

continue;

Problem 4

Write a program to count the number of occurrences of a given word in a text file. No line of text
file contains, more than 80 characters(including newline character). Suppose the name of file is testtxt
and the word to be counted is "that" and the file contains the follG~'ing data.

This is the house that Jack built, that is the house that John built.

This is better than that.

His name is John.

She is not sure whether that is his book.

-jJes 371

• e output should reproduce the lines containing the wor.d along with the number of occurrences of
_- en word, and at the end it should give the frequency of the given word in the file as-

Number of times the given word occurs in the file is 5.
XPl1.31*/

=~ncl~de<stdio.h>

=inclu~<stdlib.h>

=~nclude~~ring.h>
- t display--(char line [], char wordtext []};

in(}

char line[81];
int total 0;
FILE *fptr;

if((fptr=fopen("test.txt", "r"} }==NULL}
{

printf ("File doesn't exist\n");
exit(l};

}

whi 1 e ((f ge t s (1 ine , 8 1 , f p t r) } ! =NULL }
total=total+display(line, "that"};

printf ("Number of times the given word occurs in file is %d\n", totai);
fclose (fptr) ;

display(char line [], char wordtext []}

int i,j,k,len;
char str[80];
int count=O;
len=strlen(wordtext} ;
for(i=O;line[i] !='\O';i++}
(

k=O;
if(is_end(line[i-l]}&&is_end(line[i+len]})
(

for(k=O,j=i;k<len;j++,k++)
str [k] =line [j] ;

str[k]='\O';
if(strcmp(str,wordtext)==O)

count++;

}

if(count>O)
(

printf("%s",line) ;
printf("count=%d\n",count} ;

return count;

_.:i_end (int ch

C in Dep,372

switch (ch)
{

case '\n ': case '\ t': case
case ';': case '-':
return 1;

return 0;

': case , '., . case I • ' t case , .

}

Output:

This is the hou~e that Jack built, that is the house that John buHt.

count = 3

This is better than that.

count =1

She is not sure whether that is his book.

count = 1

Number of times the given word occurs in the file is 5.

The logic used inside the function display() is simple. We find the length of the given word by strh
.function. Suppose the length is 4, then we'll extract the 4 letter word~ in the string str one by c
and this string str is compared with the given word using strcmp().

This program would not count the word if it appears in the beginning of the line. For example if tt
is a line in the file like this-

. that is his book.

Here the word "that" will not be counted. The reason for this is that in our logic we have assw
that before the word, there is a word-ending character(eg space, newline, comma et~).

But this is the first character of the array, so this condition fails and the word is not counted. To
the correct output we can modify the if condition as- .

if ((is_end(line[i-1]) II i = = 0) && is_end(line[i+len]))

If you want to count those occurrences of the word also, when it is embedded inside another
then remove the above if condition totally. For example if the word to be searched is "rot", the!
occurrence in the words like parrot, rotten, carrot, rotate, rotary will be counted.

The search perfonned by our program is case sensitive, since the comparison performed by strCl
is case sensitivl;l. If we want to perform case insensitive search then we'll have to make a fune
of our own that performs case insensitive search of two strings.
strcmp_in(char *strl,char *str2)
{

int i;
for(i=O;strl[iJ l='\O';i++)
if (toupper (strl [i)) l =toupper (str2 [i)))

\ return 1;
return 0;

This function compares two strings of equal lengths and returns 1 if they are not same, othe

373

_e declaration for the function toupper is in the header file ctype.h.

oblem 5
.. e a program to read a text file WRONG.DAT and copy to another file RIGHT.DAT after making

ections in the text as follows:
Replace the first character of the word to uppercase, if the previous word was terminated by a
fullstop or newline.
Replace the word 'a' with the word 'an' if the next word starts with a vowel.
(Alphabets a, e, i, 0, u or A, E, I, 0, U known as vowels)

Pll. 32 * /
=~nclude<stdio.h>

~nclude<ctype.h>

"'·n()

char wrong[81l ,right[120l i
int ch, i, j;
FILE * fptr1, * fptr2;

if((fptr1=fopen("wrong.dat", Dr"))==NULLI
{

printf("File doesn't exist\n");
exi t (1 I ;

}

if((fptr2=fopen("right,dat", Ow"))==NULLI
{

printf("File doesn't exist\n"l;
exit (11;

} .

while((fgets (wrong, 81, fptr1») !=NULL)
{

i=O;j=O;
while (wrong til ! =' \0')
{ .

if(islower(wrong[il 1&&(i==Ollwrong[i-ll=='.' I I
right[j++l=toupper(wrong[i++l I i

else if (wrong[il;;:;=' '&&wrong[i-1l=='a' &&is_vowel(wrong[i+llll
{

right[j++l='n'i
right[j++l=wrong[i++l;

}

else
right[j++l=wrong[i++l;

}

r i ght [j 1=' \ 0 ' ;
fputs (right, fptr2 I ;

~s-:vowel (int chI

switch(ch)

374 C in Deptl

case 'a': case 'A': case ' e': case ' E': case 'i': case 'I': cas

, 0': case '0':

Assume stdio.h is included in all programs.
(1) main()

{

case 'u':
-.return

return 0;

case
1;

'U' :

Exercise

FILE *fptr;
unsigned char ch;
fptr=fopen ("myf ile. dat" , "w") ;
while ((ch=fgetc(fptr» !=EOF)

putchar (ch) ;
fclose(fptr);

(2) main(
{

FILE *fp;
int ch;
fp=fopen ("myfile. dat", "w") ;
fprintf (fp, "If equal love there cannot be .. ");
fputc (26, fp);
fprintf(fp," .. l e t the more loving one be me\n");
fclose (fp) ;
fp=fopen (" myfile. dat", "r") ;
while((ch=fgetc(fp» !=EOF)

putchar(ch) ;

(3) main (
{

FILE *fptrl,*fptr2;
char fname[20];
printf ("Enter the path of first file ");
scanf ("%s", fname);
fptr1=fopen(fname, "r");
if (fptrl==NULL)
{ printf("Error in opening first file\n");
fptr2=fopen (" c: \mydir\names. dat", "r");
if (fptr2==NULL)
{ printf("Error in opening second file\n");
fclose'(fptrl); fclose (fptr2) ;

exi t (l) ;

exi t (1) ;

/

Files

Suppose the path of first file is entered as

c:\mydir\myfile.dat

(4) main()
{

FILE *fptr;
int ch;
fptr=fo'pen("na~es .dat", 'w');
while ((ch= fgetc (fptr))! =EOF)

putchar (ch) ;
fclose.(fptr) ;

5} main·(
{

char name [50] ;
int empid;
fprintf(stdout,"Enter your name ");
fgets(name,50,stdin) ;
fprintf (stdout, "Enter your empid ") ;
fscanf (stdin," %d" ,&empid);
fprintf (stdout, "Your empid is %d", empid);
fputc('\n' ,stdout);
fprintf (stdout, "Your name is ");
fputs(name,stdout) ;

(6) main (
{

"FILE * fptr;
char str[80];
fptr=fopen("test.txt", "r n

);

while (fgets (str, 80, fptr) ! =EOF)
puts(str);

(7) main(int argc,char *argv[])
{

int i, sum=O;
for(i=l;i c argc;i++)

sum=sum+argv[i];
printf("%d\n",sum) ;

}

Suppose"the name of executable file is add and on the command line it is invoked as
add 2 4 6 8

375

Programming Exercise
1. Write a program to copy a file to another file such that blank lines are not written to the new

file..

2. Write a program to convert all the lower case characters of a file to upper case.

C in Depth

Write a program to display the total number of alphabets and numeric characters in file.
Write a program to remove all comments from the file. Assume that a comment starts with double
slash (II) and continues till the end of the line.
Write a program that concatenates any number of files and writes the ~utput in a destination file.
The names of files should be passed through command line arguments.
Write a program to insert line numbers and page numbers in a file.
Consider this structure-
struct {

char name;
int age;
int sal;

}

Write a program to store 10 records of this structure in the file and s'ort them on the basis 01
name and age, where name· is the primary key and age is secondary key.

8. Modify the program PI1.21, so that the records to be deleted are marked as deleted, and mak~

a function to physically delete the marked records from the file.

Answers·
(1) This program will display the contents of the file and when the end of file is reached the progran

goes into an infinite loop, since data type of ch is unsigned char while the value of EOF is -:
which is signed.

(2) If equal love there cannot be..
Since we are reading in text mode, so 26 is regarded as the end of file character and any te~

beyond it is not ·read.
(3) Error in opening second file

The first file opens successfully while the second file does not. Inside string constants, th~ backslas
is considered as an escape character, so while opening second file we should use double backslas
in the path name. The name of first file is not a string constant, so there is no need to enter doubl
backslashes in it.

(4) The value of mode should be enclosed in double quotes since it is a string.
(5) When fprintf(), fputs(), fputc() are called with stdout, they are equivalent to printf(), put

.)and putchar() respectively.When fscanf(), fgets(), fgetc() are called with stdin, they are equivale
to scanf(), gets() and getchar() respectively.

(6) fgets() does not return NULL on end of file or on error, not EOF. The contents of the who
file will be displayed and then fgets() will return NULL at the end of file, but the loop conditil
checks for EOF, so the last line will be displayed infinitely.

(7) Command line arguments are stored as strings, so we have to use atoi() function to convert th~

to integers. The correct statement would be-
sum = sum + atoi(argv[l]);

Chapter 12

The C Preprocessor

C has a spe<;:ial feature of preprocessor which makes it different from other high level languages that
on't have this type of facility. Some advantages of using preprocessor are

(i) Readability of the program js increased.
(ii) Program modification becomes easy.
(ill) Makes the program portable and efficient.

e know that the code that we write is translated into object code by the compiler. But before being
ompiled, the code is passed through the C preprocessor. The preprocessor scans the whole source
ode and modifies it, which is then given to the compiler.

Source code·

The lines starting with the symbol # are known as preprocessor directives. When the preprocessor finds
a line starting with the symbol #, it considers it as a command for itself and works accordingly. All
the directives are executed by the preprocessor, and the compiler does not receive any line starting with

symbol. .Some features of preprocessor directives are
(i) Each preprocessor directive starts with a # symbol.
(ii) There can be only one directive on a line.
(iii) There is no semicolon at the end of a directive.
(v) To continue a directive on next line, we should place a backslash at the end of the line.
(vi) The preprocessor directives can be placed anywhere in a program (inside or outside functions)

but they are usually written at the beginning of a program. '
(vi) A directive is active from the point of its appearance till the end of the program.

'"The main functions performed by the preprocessor directives are·
1. Simple Macro Substitution
2. Macros with arguments
3. Conditional Compilation

378

4. Including 'files

5. Error generation, pragmas and predefined macro names.

The preprocessor directives that perform these functions are as given below-

#define #else #error
#if #elif #line
#ifdef . #endif #pragma
#ifndef /' #und6f

C in l)epth

There are three operators that are used with these directives-
Defined operator defined()
Stringizing operator #
Token pasting operator ##

Apart from the facilities provided through directives, another important task that preprocessor performs
is that it replaces each comment by a single space.

12.1 #define

'11lII.

We have already used this directive to define symbolic constants. The general syntax is-

#pefme macro name macro_expansion

liere mflcro_name is any valid C identifier, and it is generally taken in capital letters to distinguish'
from other variables. The macro_expansion can be any text. A space is necessary between the macro
name and macro expansion. The C preprocessor replaces all the occurrences of macro_name wi
the macro_expansion. For example-

#deflne TRUE 1

#define FALSE °
#define PI 3.14159265
#define MAX 100

(

#define RETIRE AGE 58

C preprocessor searches for macro_name in the C source code and replaces it with the macro_expansioJ
For example wherever the macro name TRUE appears in the code, it is replaced by 1. These typl
of constants are known as symbolic constants. These constants increase the readability of the prognu
for example it is better to use the name PI 'instead of the value itself. Moreover if after some time'~

may decide to change the value of a constant, then the change has to be made only at one place. F
example if we decide to increase the RETIRE_AGE from 58 to 60, then we have to change the #defi

. directive only. If we had not defined this constant then we would have to replace each occurrence
58 by 60. We have already utilized this feature to define the size of an array.

We can also define any string constant in the place of macro_expansion.
/*P12.1 Program to show that macro expansion can be a string constant
#include<stdio.h>
#defineMSSG "I understand the use of #define\n"
main()
{

printf (MSSG) ;

_ e C Preprocessor 3 9

tput:

I understand the use of #define

_ e C preprocessor searches for the macro name MSSG and substitutes the message "I understan
e use of #define\n" in the printf ().

-e can have macro expansions of any sort. Here are some more examples
#define AND &&

#define OR I I
#define BEGIN maine){
#define END }
#define INFINITE while(1)
~define NEW_LINE printf("\n");
#define ERROR printf("An error has occurred\n");

ere is a semicolon in the last two directives. This semicolon is just a part of the macro_expansion.
_'ow whenever we write NEW_LINE or ERROR in the program, they will be replaced by printf calls
. d the terminating semicolon.

member that the C preprocessor will simply replace the macro_name with the macro_expansion and
e macro_expansion can be any text. So it is our responsibility to see that after replacement the re.sulting

e is valid in C. For example if we define. a macro MAX like this-

#define MAX 5;

_-ow consider this declaration statement-

int arr[MAX];

~is wil~ be translated by the preprocessor as

int arr[5;];

d this is not valid in C.

the macro_name appears inside a character constant, string constant or a comment then it is no·
:-eplaced and is left as it is. For example

#define SUN 2
#define WINDOWS 3 \
printf("Rays of SUN are coming through the WINDOWS");
Here the replacement will not take place inside the string.

is also possible to define a macro without any macro expansion. for example

#define TEST

-:his is used in compilation directives where the preprocessor only needs to know whether the
been defined or not.

2.2 Macros with Arguments
~e #define directive can also be used to define macros with arguments. The general syntax is

#define macro_name(arg 1, arg2,) macro_expansion

380 C in Depth

Here argl, arg2 are the fonnal ar~uments. The macro_name is replaced with the macro_expansion
and the formal arguments are replaced by the corresponding actual arguments supplied in the macro
call. So the macro_expansion will be different for different actual arguments. For example suppose we
define these two macros-

#define SUM(x, y) ((x) + (y))

#define PROD(x, y) ((x) * (y))

Now suppose we have these two statements in our program

s = SUM(5, 6);

p = PROD(m, n);

After passing through the preprocessor these statements would be expanded as

s = ((5) + (6));

p = ((m) * (n));

Since this js just replacement of text, hence the arguments can be of any data type. For example we
may use the macro SUM to find out the sum of long or float types also.

The following' statement-

s = SUM(2.3, 4.8);

would be expanded as-

s = ((2.3) + (4.8));

/*P12.2 Program to' understand macros with arguments*/
#include<stdio.h>
#define SUM (x, y) «x) + (y))

#define PROD (x, y) «x) * (y))

main()
{

int l,m,i,j,a=5,b=3i
float p, qi'
1 =SUM (a , b) i

m=PROD (a, b) i

i=SUM(4,6) i

j=PROD(4,6)i
p=SUM(2.2,3.4)i
q=PROD(2.2,3.4)i
printf("l=%d,m=%d,i=%d,j=%d,p=%.lf,q=%.lf\n",l,m,i,j,p,q) i

}

Output:

I = 8, m = 15, i = 10; j = 24, P = 5.6, q = 7.5

Let us see some more examples of macros with arguments
#define SQUARE(x) ((x)*(x))

#define MAX(x, y) ((x) > (y) ? (x) : (y))
#define MIN(x, y) ((x) < (y) ? (x) : (y) J
#define ISLOVvER(c) (c >= 97 && c <= 122)
#define ISUPPER(c) (c >= 65 && c <= 90)

The C Preprocessor

#define TOUPPER(c) ((c) + 'A' - 'a')

#define ISLEAP(y) ((y%400 = = 0) II (y%100!=0 && y%4 = = 0))
#define BLANK_LINES(n) { int i; fore i = 0; i < n; i++) printf("\n"); }

#define CIRCLE_AREA(rad) (3.14 * (rad) *(rad))

381

_ ote that there should be no space between the macro_name and left parenthesis, otherwise the macro
expansion is consid~red to start from the left parenthesis. For example if we write a macro like this-

#define SQUARE (x) ((x)*(x))

_ ow any call like SQUARE(5) would be expanded as

(x) ((x)*(x))(5)

Here SQUARE is considered as a macro without arguments and the text (x) ((x)*(x)) is regarded
macro expansion. SO SQUARE is replaced by the macro expansion and (5) is written as it is.

12.3 Nesting in Macros
One macro name can also be used for defining another macro name i.e. the macro expansion can also

ontain the name of another macro. For example-

#define PI 3. 14

#define PISQUARE PI*PI

_ ow if we have an expression-

k = PISQUARE;

~irst time the preprocessor will expand it as

k = PI * PI;

_-ow agaiQ the preprocessor rescans this expanded expression, and if any macros are found then it
replaces them. This process of rescanning continues till no macros are left in the expression. So finally

e expanded expression would be- ~

k = 3.14 *3.14;

Here is another example of nesting of macros

#define ISLOWER(c) (c >= 97 && c <= 122)

#define TOUPPER(c) ISLOWER(c) ? «c) + 'A' - 'a') : c

ere the macro TOUPPER uses the macro ISLOWER in its expansion. If the character is lowercase
en only it will be changed to uppercase otherwise it will remain unchanged.

The following program illustrates the use of nested macros-

"P12.3 :Program to understand nesting in "macros* /

=include<stdio.h>

=define ISLOWER(c) (c>=97&&c<=122)

-define ISUPPER(c) (c>=65&&c<=90)

=define ISALPHA(c) ISLOWER(c) II ISUPPER(c)
-define ISNUM (c) (<:;>=48&&c<=57)

-def ine ISALPHANUM (c) ISALPHA (c) I I ISNUM (c)
=ain()

382 C in Depth

char ch;
printf ("Enter a character \n") ;
scanf("%c", &ch);
if (ISALPHANUM(ch»

printf (" %c is an alphanumeric character\n", chI ;
else

printf ("%c is not an alphanumeric character\n", chI ;
}

If the macro name appears inside its own expansion, then it is not expanded. So don't try to write
recursive macros like this one-

#define FACTORIAL(k) k = = 0 ? 1 : k * FACTORIAL(k-l) /*Incorrect*/

12.4 Problems with Macros
You must be-wondering why so many parentheses are used in the macro expansion. Since the preprocessor
simply replaces the formal argument with the actual argument, we may not get the desired result in
some cases. Let us see what sort of problems can occur while using macros and how they can be
avoided.

In the following program we have defined a macro PROD without any parentheses in the macro expansiOI
/*P12.4*/
#include<stdio.h>
#definePROD(x,y) x*y
main ()
{

printf("%d\t",PROD(2,4»;
printf("%d\n",PROD(3+4,5+1» ;

)

Output:

8 24

Here the first printf() gives the correct result 8, but the second printf() prints 24 while we we
expecting the result to be a product of 7 and 6 i.e. 42. Let us see how the preprocessor expand
these macros.

PROD(2, 4) is expanded as 2*4

PROD(3+4 , 5+1) is expanded as 3+4*5+1

The precedence of multiplication operator is more than addition operator so the, calculation went 1
this, 3+20+ I =24 and hence we got the wrong result. This problem can be solved by enclosing el

formal argument inside parentheses. So now we rew/rite our program like this-
/*P12.5*/ -,
#include<stdio.h>
#define PROD (x, y) (x) * (y)
main ()
{

printf("%d\t",PRuu(~,4»;

printf("%d\t",PROD(3+4,5+1));
printf("%d\n".60/PROD(2,3» ;

(; ?reprocessor

ut:

842 90

the first two printf() give us the desired result. In the third printf we had tried to divide 60 by
product of 2 and 3 and the expected result was 10 but we got 90, so still there is a problem in

_ macro. Again let us see how preprocessor has done the. expansions.
PROD(2, 4) is expanded as (2)*(4)
PROD(3+4 , 5+1) is expanded as (3+4)*(5+1)
60/PROD(2, 3) is expanded as 60 / (2)*(3)

we can see that in the last case, first 60 is divided by 2 and then the result is multiplied by 3
use / and * operators associate from left to right. So the result was not the expected one. To solve

-- sort of problem we should enclose whole macro expansion inside parentheses. So the correct way
: defining macro is-

#define PROD(x, y) ((x)*(y))

_ iW 60/PROD(2, 3) would .be expanded as 60 / ((2)*(3)) and hence 60 is divided by, the product
: and 3, and we can get the desired result.

if your macro is accepting arguments and you want it to work properly then it is better to put
ntheses around the entire macro expansion and also around each argument.

_- w consider this program and we will find another sort of problem.
?12.6*/

:~ clude<stdio.h>
-c.efine SQUARE (x) ((x) * (x))

-=in()

int k:5, s,
s=SQUARE(k++) ;
printf("s"= %d, k %d \ n" , s , k) ;

tput:

s = 25, k = 7

-ere the statement

s = SQUARE(k++); is expanded as s = ((k++) * (k++));

-ere value of k is incremented twice while we intended to assign the square of k to variable s, and
increase the value of k only once. Moreover the result of expressions like (k++) *(k++) is undefined

C. So in this case it is better if we use a function instead of macro.
-Pl2.7*/

:~nclude<stdio.h>

::..::J.t square (int x)

return x*x;

--in ()

int k=5,s;

384

s==square(k++) ;
printf ("s .== %d, k %d\n",s,k);

C in Depth

}

Output:

s = 25, k = 6

Now we will see a different type of problem. Consider this program, in which. we have written a mac1"l
to swap the value of 2 variables of any datatype.. .
I*P12.8*/
#iriclude<stdio;h>
#define SWAP(dtype,x,y) dtype t; t x, x y, y t;
main()

int a==2,b==5;
SWAP(int,a,b)
printf(~a==%d,b==%d\n",a,b);

}

Output:

a = 5, b=2

There is no problem in this program. It worked according to our expectations and swapped the valm
of a and b. The macro was expanded in this way-

SWAP(int, a, b) is expanded to { int t; t = a, a = b, b = t; }

After macro expansion, the maine) function would look like this
main()
{

int a==2,b==5;
{ int t; . t==a, a==b, b=::t; }
printf ("a == %d, . b == %d\n", a, b) ;

Here t is a variable that is local to the block of code in which it is defined.

Now consider the next program, it is similar to the above program except that the names of the variablt
to be swapped are sand 1.
/*P12.9*/
#include<stdio.h>
#define SWAP(dtype,x,y) dtype t; t==x, x==y, y==t;
main()
{

int s==2, t==5;
SWAP(int,s,t)
printf ("S == %d, t %d\n",s,t);

}

Output:

s = 2, t = 5

The values of variables sand t were not swapped. After macro expansion, the main function wou
look like this- , .

_ e C Preprocessor 385

in()

int s;"2, t=5;
{ int t; t=s, s=t, t=t;
printf("s = %d, t = %d\n",s,t);

- now you know why things went wrong. When the macro was expanded, there was a conflict between
-~ variable t declared inside the block, and the variable t declared outside the block in main(). To avoid

h type of problems, we can use some naming convention for local variables declared in macros.
- example we may decide to wr~te them-in capita-Is.

- ~e is another problem that can cause the program to give unexpected results.
?12.10*/

:- clude<stdio.h>
:~<=:fine MACRO (x) if (x==O) printf ("Out for a Duck\n")

- ':n ()

int runs=12;
if(runs<100)

MACRO (runs) ;
else

printf ("Score'd a century\n");

ut:

Scored a century

~ runs were only 12, so the output is wrong. Let's see what happened after the code was expanded.

expanded code is-
if(runs<100)

if (runs==O) printf ("Out for a duck");
else

printf ("Scored a century\n");

e e pan ""as matched with the if part of the macro. To avoid this problem either we can enclose
hole macro inside parentheses or we may use a conditional operator.

=define MACRO(x) { if (x = = 0) printf("Out for a Duck\n") }

=define MACRO(x) x = = 0 ? printf("Out for a duck\n") : printf("\n")

Macros Vs Functions
e seen that macros with arguments can perform tasks similar to functions. In' this topic we'll
e the advantages and disadvantages of functions and macros.

o is expanded into inline code so the text of macro is inserted into the code for each macro
ence macros make the code lengthy and the compilation time increases. On the other, hand the

a function is written only at one place, regardless of the number of times it is called so the
functions makes the code smaller.

'ons, the passing of arguments and returning a value takes some time and hence the tAel;ution
• rogram becomes slow while in the case of macros this time is saved and they mak~ the program

386 C in Dep

faster.

So functions are slow but take less memory while macros are fast but occupy more memory due
duplicity of code. If the macro is small it is good but if it is large and is called many times ther
is better to change it into a function since it may increase the size of the program considerably. I
sometimes macros can prove very useful and also improve the execution spe~d. For example in
file stdio.h, getchar() and putchar() are defined as macros. If they were defined as functions tJ
there would be a function call for processing each character, which would increase the run timl

Preprocessor just replac,es or substitutes the text without any sort of checking. So macros can be u
with arguments of different types as we have seen earlier in the case of macro SUM in program PI:
Functions perform type checking so separate functions have to be written for each data type.
remember that lack of type checking facility in macros makes them more error prone.

So whether to use a macro or a function depends on the memory available, your requirement and
nature of the task to be performed.

\

12.6 Generic Functions
Now we'll explore an interesting and powerful feature of preprocessor. We can define macros that

; be used to generate functions for different data types. These types of macros are called generic functi
These macros generally take the function name and data type as arguments and the macro call is rep};
by a function definition. All this may sound a bit confusing, don't worry the following program
clear- all your confusions.

/*P12.11 Program to understand generic functions * /
#inc1ude<stdio.h>
#define MAX(FNAME,DTYPE) \

DTYPE FNAME (DTYPE X, DTYPE Y) \
{ \

return X>Y ? X:Y;
}

MAX(max_int,int)
MAX (max_float, float)
MAX (max_double, double)
main ()
{

int p;
float q;
double r;
p=max_int(3,9) ;
q=max_f1oat(7.4,5.7) ;
r=max_double(12.34,13.54) ;
printf("p = %d,q = %.2f,r

\

%.2lf \n",p,q,r);
}

Output:

p = 9, q = 7.40, r = 13.54
i

The three macro calls written just before main() are expanded as-

C Preprocessor

~X(max_int, int)

~(max_float, float)

int max_int (int X, int Y)
{

return X>Y? X : Y;
}

float max_float (float X, float Y)
{

return X>Y? X : Y;
}

387

MAX(max_double, double) ~. double max_double (double X, double Y)
{

return X>Y? X : Y;
}

e can see that the three macro calls written before maine) are expanded into function definitions.
- is way. we can generate function definitions for different data types.

#undef

definition of a macro will exist from the #define directive tiII the end of the program. If we want
define this macro we can use the #undef directive.

tax:

.tundef macro name

this directive if the macro_name is encountered in the program then it will not be replaced by
macro_exapnsion. In other words now the scope of the macro is limited to the code between #define
#Undef directives. This is used when we want the macro definition to be valid for only a part of
program. This directive is generally useful with other conditional compjJation directives.

_.8 Stringizi.ng Operator (#)

the definition of macro, a formal argument occurs inside a string in the macro expansion then
. neit replaced by the actual argument. For example if we have a macro-

#define SHOW(var) printf("var = %d", var)

"n a call SHOW(x); will be expanded as printf("var = %d", x);

the formal argument var outside the string was replaced by the actual argument x, but inside the
- g this replacement did not take place.

-_ solve this sort of problem we can lise the stringizing operator. This operator is used within the definition
=macro. It causes the argument it precedes to be turned into a string or in other words it stringizes

cro argument. So if in the macro expansion, we have a formal argument preceded by #, then both
- operator and argument are replaced by the actual argument surrounded within double quotes. We

write the above macro using stringizing operator as-

#define SHOW(var) printf(#var "=%d", var)

---~ -- -

388 C in DeptA

Now a call SHOW(x); will be expanded as printf("x" "=%d", x);

We know that adjacent strings are concatenated so after string concatenation this becomes

printf("x = %d", x);

We can make the above macro more general so that' it can display variable 'of any type.

/*P12.12 Program to understand the use of stringizing operator* /
#include<stdio.h>
#define SHOW(var,format) printf(#var " = %" #format "\n",var);
main ()
{

int x=9;float y=2.5;char :;::='$';
SHOW (x, d) ;
SHOW(y,O.2f) ;
SHOW(z,c) ;
SHOW(x*y,O.2f) ;

}

Output:
x = 9

y = 2.50
z = $

x*y = 22.50

The macros in the above program were expanded as-
SHOW(x, d); . ~ printf("x" " = 0/0" "d" "\n", x);
SHOW(y, 0.2f); ~ printf("y" " = 0/0" "0.2f" "\n", y);

. SHOW(z, c); ~ printf("z" " = 0/0" "c" "\n", z);
SHOW(x*y, 0.20; ~ printf("x*y" " = 0/0" "0.2f" "\n", x*y);

After string concatenation the .above statements look like this
printf("x = O/Od\n", x);

printf("y = %0.2f \n", y);
printf("z = %c\n", z);
printf("x*y = %O.2f \n", x*y);

12.9 Token Pasting Operator(##)
Token pasting operator ## is used in a macro definition to concatenate two tokens into a single to
As the name implies, this operator pastes the two token into one.

/*P12.13 Program to understand the use of token pasting operator*1
#include<stdio.h>.
#define PASTE (a, b) a##b
#define MARKS (subject) marks_##subject
main ()
{

int k2=14,k3=25;

C Preprocessor

int marks chern 89, rnarks_rnaths = 98;
printf("%d %d ",PASTE(k,2),PASTE(k,3));
print f (" %d %d\n", MARKS (chern) ,MARKS (rnaths)) ;

tput:

14 25 89 98

e token pasting operator converts the above statements into

printf("~d %d", k2, k3);

printf("%d %d", marks_chern, marks_maths);

_.10 Including Files

389

:- e preprocessor directive #include is used to include a file into the source code. We have already used
. directive to include header files in our programs. The filename should be within angle brackets or

- ble quotes. The syntax is-

#include "filename"

#inc1ude<filename>

~o preprocessor replaces the #include directive by the contents of the specified file. After including
file, the entire contents of file can be used in the program. If the filename is in double quotes, first

. searched in the current directory (where the source file is present), if not found there then it is
ched in the standard include directory. If the filename is within angle brackets, then the file is searched

dle standard include directory only. The specification of standard include directory is implementation
- ed.

- erally angled brackets are used to include standard header files while double quotes are used to include
er files' related to a particular program. We can also specify the whole path instead of the path
e. For example-

#include "C:\mydir\myfile.h"

-e that here the path is not a string constant so there is no need to double the backslashes.

lude directive should not be used to include the contents of other '.c' files. It is generally used
. elude header files only. Header files are given '.h' extension to distinguish them from other C files,

- ough this is not necessary. Header files generally contain macro definitions, declarations ofenum,
ture, union, typdef, external functions and global variables. The function definitions or global variable

- ·tions should not be put in the header files.

de files can be nested i.e. an included file can contain another #include directive.

_.11 Conditional Compilation
may be situations when we want to compile some parts of the code based on some condition.

_ know that before compilation the source code passes through the preprocessor. So we can direct
preprocessor to supply only some parts of the code to the compiler for compilation.

itional compilation means compilation of a part of code based on some condition.

e conditions are checked during the preprocessing phase. The directives used in conditional
ilation are-

#ifdef #ifndef #if #else #elif #endif

390 C in Depth

Every #if directive should end with a #endif directive. The working of these directives is somewha
similar to that of if... else construct.

12.11.1 #if And #endif

An expression which is followed by the #if is evaluated, if result is non-zero then the statements hetweeJ
#if and #endif are compiled, otherwise they are skipped. This is written as-
#if constant-expression

statements

#endif

The constant-expression should be an integral expression and it should not contain enum constanl
sizeof operator, cast operator or any keyword or variables. It can contain arithmetic,'logical, relation
operators. If any undefined identifier appears in the expression, it is treated as having the value zeJ

/*P12.14 Program to understand the use of #if directive*/
#include<stdio.h>
#defineFLAG 8
main()
{

int a=20,b=4;.
#if FLAG >= 3

printf ("Value of FLAG is greater than or equal to 3 \n") ;
a=a+b;
b=a*b;
printf ("Values of variables a and bhave beenchanged\n");

#endif
print f ("a = %d ,b %d \ n" , a , b) ;
printf ("Program completed\n"); "

}

Output:

Value of FLAG is greater than or equal to 3
Values of variables a and b have been changed
a = 24, b = 96

Program completed

In this program FLAG is defined with the value 8. First the constant expression FLAG >= 3 is ev
since it is true(non zero), hence all the statements between #if and #endif are compiled. SUpp(i
value of FLAG is changed to 2, now,the constant expression FLAG /= 3 would evaluate to false
hence the st~tements between #if and #endif will not be compiled. In this case the output of the
would be-

a = 20, b = 4

Program completed

12.11.2 #else and #elif

"Il,.

#else is used with the #if preprocessor directive. It is analogous to if.., else control structure.
is as-

The C Preprocessor 391

~if constant-expression
statements

:else
statements

:endif

the constant expression evaluates to non-zero then the statements between #if and #else are compiled
otherwise the statements between #else ~nd #endif are compiled.
/*P12.l5 Program to understand the use of #else directive* /
:include<stdio.h>
-define FLAG 2
ain ()

int a:20,b:4;
#if FLAG>:3

printf ("Value
a:a+b;
b=a*b;

#else
printf ("Value
a=a-b;
b=a/b;

#endif
printf ("a %d,
printf("Program

of FLAG is greater than or equal

of FLAG is less than 3 \n") ;

b = %d\n",a,b);
completed\n") ;

to 3 \n") ;

Output:

Value. of FLAG is greater than or equal to 3

a = 24, b = 96
Program completed <,

Here the value of FLAG is 8, so the constant expression FLAG >= 3 is evaluated to true and hence
:he statements between #if and #else are compiled. If the value of FLAG is changed.to 2, then the
-onstant expression FLAG >=,3 would evaluate to zero, so now the statements between #else and #endif

'11 be compiled and the output of the program would be

Value of FLAG is less than 3

a = 16, b = 4
Program completed

_-esting of #if and #else is a.lso possible and this can be done using #elif. This is analogous to the else .. .if
dder that we had studied in control statements. Every #elif has one constant expression, first the

expression is evaluated if the value is true then that part of code is compiled and all other #elif expressions
e skipped, otherwise the next #elif expression is evaluated.

ntax:
#if constant-expressionl

#elif constant-expression2

j1

392 C in Dept!.

#elif constant-expression3

#else

#endif

The above code can be written using #if and #else directives as
#if constant-expressionl

#else
#if constant-expression2

#else
#if constant-expression3

#else

#endif
#endif
#endif

Here for each #if there should be a #endif, while when using #elif there is only one #endif. Let us tak
a program that uses #elif directive-
/*P12.l6 Program to understand the use .of #elif directive*/
#include<stdio.h>
#define FLAG 1
main ()
{

int a=20,b=4;
#if FLAG==O

printf ("Value of FLAG is is zero\n");
a++;
b++;

#elif FLAG==l
printf ("Value of FLAG is one\n");
a- -;
b-:- -;

#elif FLAG==2
printf ("Value of FLAG is two \n");
a=a-3;
b=b-3;

#else
printf ("Value of FLAG is greater than two or less than zero\n")
a=a+b;
b=a-b;

#endif
printf ("a = %d, b = %d\n", a, b) ;
printf ("Program completed\n");

}

Output:
Value of FLAG is one

C Preprocessor 393

a = 19, b = 3

Program completed

the expression FLAG = = 1 is true, hence the statements corresponding to this #elif are compiled.

_.11.3 defined Operator

• tax: defined(macro_name)

. operator is used only with #if and #elif directives. It evaluates to 1 if the macro_name has been
• firied using #define, otherwise it evaluates to zero. For example:

#if defined(FLAG)

me macro FLAG has been defined using #define, then the value of expression defined(FLAG) would
1, otherwise its value would be o.

_.11.4 #ifdef and #ifndef

-:'e directives #ifdef and #ifndef provide an alternative short form for combining #if with defined operator.

#if defined(macro_name) is equivalent to #ifdef macro_name

#if !defined(macro_name) is equivalent to #ifndef macro_name

-yntax of #ifdef-
#ifdef macro name

#endif

- the macro_name has been defined with the #define directive, then the statements between #ifdef and
dif will be compiled. If the macro_name has not been defined or was undefined using #undef then

ese statements are not compiled.

mtax of -#ifndef-
#ifndef macro_name

#endif

...: the macro_name has not been defined using #define or was undefined using #undef, then the statements
tween #ifndef and #endif are compiled. If the macro_name has been defined, then these statements

not compiled.

_et ·us take a program- ..
P12.17 Program to understand the use of #ifdef 9.irecti\ve /

=includecstdio.h>
= efine FLAG
::.ain ()

int a=20,b=4;
#ifdef FLAG

printf ("FLAG is defined\n");
a++;
b++;

#endif
printf ("a = %d,
printf("Program

b= %d\n",a,b);
completed\n") ;

394 C in Depth

b= %d\n",a,b);
completed\n") ;

·Ilijr.

Output:
FLAG is defined

a = 21, b = 5
Program completed

The macro FLAG has been defined, so the statements between #ifdef and #endif are compiled. If we
delete the definition of macro FLAG from the program, then these statements won't be compiled and
the output of the program would be-

a = 20, b = 4

Program completed

/*P12.18 Program to understand the use of #undef and #ifdef directives*
#include<stdio.h>
#define FLAG
main ()
{

int a=20,b=4;
#ifdef FLAG

printf ("FLAG is defined\n");
a++;
b++;

#endif
#undef FLAG
#ifdef FLAG

printf("Prepocessor\n H
);

a++;
b++;

#endif
printf("a %d,
printf("Program

}

Output:

FLAG is defined
a = 21, b = 5

Program completed

Here we have undefined the macro FLAG in the middle of program. So the macro FLAG is deflIJ
only for the part of the program that is before the #undef directive, and it is undefined for the r
of the program. "
/ *P12 .19 Program to understand the use of #ifndef directive* /
#include<stdio.h>
main()
{

int a=20,b=4;
#ifndef MAX

printf ("MAX is not "defined\n");
a- -;
b- -;

#endif

C Preprocessor

printf("a = %d,
printf("Prograrn

b = %d\n",a,b);
cornpleted\n") ;

395

tput:

MAX is not defined
a = 19, b = 3
Program completed

ere the macro MAX has not been defined, so the statements between #ifndef and #endif are compiled.

-:he existence of defined operator is important in some cases. For example we can't use the short
.1mlls(#ifdef and #ifndef) here-
i) When we need to check the existence of more than one macros, for example

#if defined(ABC) && defined(PQR) && !defined(XYZ)
ii) When the existence of macro is to be checked in #elif

#if defined (ABC)

#elif defined (PQR)

#elif defined(XYZ)

#endif

There are lot of situations where conditional compilation can prove useful e.g. writing portable code,
debugging, l;ommenting. We'll discuss all these cases one by one.

12.11.5 Writing Portable Code

Suppose. we want to write a program that can be run on different systems. In this case some lines
of the code would be system dependent. These !ines can be written using conditional compilation
directives. Suppose we have made different header fil~s corresponding to 'different machines. We can
write code to include the appropriate header file while working on a specific machine. "
#if MACHINE == ABC

#define hfile abc.h
#elif MACHINE == PQR

#define hfile pqr. h
#elif MACHINE = = XYZ

#define hfile xyz.h
#else
#define hfile newfile.h
#endif .

#include"hfile"

Now when we want to work on machine ABC, we can define the macro MACHINE as

#define MACHINE ABC

So the file abc.h will be included.

If we want to work on machine XYZ, we can define MACHINE as

#define MACHINE XYZ

Now the file xyz.h will be included.

396 C in Depth

Similarly if we have some code in the program that is different for different machines, we can use
the above structure.

12.11.6 Debugging

The compiler can detect syntax errors but it is unable to detect run time errors, which result in incorrect
output. To trace these types of errors in the program the debugging has to be done by the programmer.
Ina large program where many functions and variables are involved this can be a difficult task. For
this debugging purpose we can insert some printf statements inside' the code that tell us about the
internlediate results. After the debugging is complete we don't need these statements and we can delete
them. But suppose after few days we again need to debug the program, then we'll have to insert all
those statements once again. We have another better alternative if we use preprocessor directives. Using
these directives we can make these debugging statements active or inactive depending on our needs.
The following program shows this-

#include<stdio.h>
#define DEBUG
main()
{

int x;

if de f DEBUG
printf("Starting main() \n");

#endif

func () ;

ifde f DEBUG
.printf("Now value of x

#endif

func ()

#ifdef DEBUG
printf ("Inside func () \n") ;

#endif

%d and y = %d \ n" , x, y) ;

II,.

}

When the debugging is complete we can just undefine or delete the macro DEBUG. This will make the
#ifdef condition false and all the debugging statements will not be compiled. So in this way we can
switch between the debugging and normal mode by defining or deleting the macro DEBUG withou
having to delete all the debugging statements.

Including #ifdef and #endif for every debugging statement makes things look more lengthy and confusing.
To make it more concise we can define another macro SHOW. The macro SHOW is defined in such
a way that if macro DEBUG is defined, then SHOW will be replaced by a printf statement, and if DEBUG
is not defined then SHOW won't be replaced by anything.

#include<stdio.h>
#define DEBUG

C Preprocessor

-:.::def DEBUG
#define SHOW (message)

=e se
#def ine SHOW (mes sage)

=:ndif
-in ()

printf message

397

int x, y

SHOW (("Starting main () \n")) ;

fUl1.C () ;

SHOW (("Now value of x

c ()

SHOW(("Inside func()\fl"»i

%d and y %d \n",x,y»;

- e the argument message sent to the macro SHOW consists of the control string and all arguments
'ch we want to send to printf(), and these are to be enclosed in parentheses. This is why we have

two pairs of parentheses while calling SHOW.

_.11.7 Commenting A Part Of Code

_ pose while testing or for some other reason, we want to comment some part of our source code
contains many comments. This can't be d()ne using our usual technique (/* */) since comments

't be nested in C. So here we can use our conditional compilation directives to comment out parts
our source code.

=~clude<stdio.h>

=:iefine COMMENT·
'n()

#ifndef COMMENT
statement .
statement ..

#endif

/ * ,..comment * /
/* ...comment */ Code to be commented

. the macro COMMENT is defined, then the code will be commented (not compiled).and if this macro
not defined then it will treated as usual code and will be compiled.

_.11.8 Other Uses of conditional compilation

you open any header file, you will see that whole contents of the file are enclosed inside #ifndef

398

.. #endif directives. For example if we open stdio.h file
#ifndef STDIO H
#define. STOIO_H
....contents of stdio.h file
#endif

.C in Depth

. This sort of coding ensures that the contents of this file will be included only once. The first time when
the file stdio.h is included, the preprocessor finds that macro _STDIO_H is not defined, and hence
it defines this macro and includes the contents of the file. After this whenever stdio.h is included in
our program, the preprocessor finds that the macro _STOIO_H is defined and hence it skips all the
statements between #ifndef and #endif.

We can use a similar strategy to avoid multiple definitions in our program. For example the definitioii
of constant NULL may be needed by many files such as stdio.h, sdtlib.h, string.h, alloc.h etc. This
constant can be defined in ail these files but if we include more than one files which have definition
of NULL, then our program will have multiple definitions of NULL. So definition of NULL is put in
a separate file _null.h l:ind this file is included in all other files.

These files don't include the _null.h file directly, but enclose the include directive inside #ifndef and
#endif like this-

#ifndefNULL
#include< null.h'
#endif

Now this file will be included only when NULL has not been defined.

12.12' Predefined Macro Names
There are certain predefined macro names which can't be undefined or redefined by #undef or #define

. DATE

TIME- -
FILE

LINE

STDC- -

String constant that represents the date of compilation in the format "mm dd yyyy

String constant that represents the time of compilation in the format "hh:mm:ss

String constant that represents the name of the file being compiled.

Decimal constant that represents the line number being compiled.

Decimal constant, which is 1 if compiled with ANSI standard

/ *P12. 20 Program to display the values of predefined· constants * /
#include<stdio.h>
main(
{

printf ("%s\n", __DATE__ ' ;
printf (" %s \n" I __TIME__ l ;
printf("%s\n", __FILE__J;
printf("%d\n". __LINE__ l;

}

Output:

Sep 24 2003
10:24:42

C Preprocessor

C:\P20.C
8

399

macros _FILE_ and _LINE_ can be used to write error messages in the program, that can
the line number and file name where the error occurred.

_.13 #line
- directive is used for debugging purposes.

tax:

#line dec_const string..:..const

.dec_const is any decimal constant and string_const is any string constant. This directive assigns
_const and string_const to the macros _LINE_ and _FILE_ respectively. If the strin~_const

ot specified then the macro _FILE_ rem<l:ins unchanged.

T P12. 21 Program to understar"d the use of #line, name of this file is
-- g. c * I
--=clude<stdio.h>
-i.n ()

printf("C in depth\n");
printf ("%d. %s\n", __LINE__ , __FILE~_) ;
#line 25 "myprog.c"
printf("%d %s\n",_..:..LINE__ , __FILE__);

ut:

C in depth
'6 C:\prog.c

25 myprog.c

.14 #error
- preprocessor directive is used for debugging purpose. #error directive stops compilation and displays

31a1 error message attached with it.

x:

#error message

example:
'_=ndef MACRO.
'~ror MACRO is not defined
=-.dif

_=def TINY
'='-ror This program will not run in the tiny model.
=-.dif

_= defined (_Windows) && ! def ined (_BUILDRTLDLL)

400 C in Depth

#error Timer not available for Windows
#endif

Suppose a program has been written using ANSI C standard, then this line.can be inserted at the beginnin
of the code.

#ifndef STDC
#error This program should be run using ANSI C
#endif

Suppose there are two files and both of them can't be included at a time, then we can use #error directi,
to stop inclusion of both files at a time. For example suppose the files stdarg.hand varargs.h can
be included ata time, then we can insert #error directive inside the files like this-

I*Structure of file stdarg.h*1
#ifndef STDARG_H
#define __STDARG_H

#ifdef _VARARGS_H
#error Can' t include both stdarg. hand varargs. h
#endif
..... contents of file .
#endif

I*Structure of file varargs.h*1
#ifndef __VARARGS_H
#define __VARARGS_H

#ifdef STDARG~H

#error Can' t include both stdarg. hand varargs. h
#endif
..... contents of file .
#endif

12.15 Null Directive
A preprocessor directive consisting only of the symbol # is known as the null directive and it h
effect.

12.16 #pragma

#pragma startup

It allows the programmer to specify the function that should be called upon program startup i.e.

This is an implementation defined directive that allows various instructions to be given to the co

Syntax:

#pragn1a name

Here name is the name of the pragma we want. The pragmas may be different for different com
You should check your compiler's manual for the pragmas available and their details. Any unreco~

pragma directive is just ignored, without showing any error or warning. Some #pragma statements av
in Turbo Care as- . \

"""

C Preprocessor 401

. () is called. For example

#pragma startup func 1

~e function func I() will be called before the main() function.

ragma exit

ows the programmer to specify the function that should be called upon program exit i.e. before
program terminates.

gma exit func2

_e function func2() will be called just before the program terminates.

ragma inline

ells the compiler that inline assembly code is contained in the program.

ragma warn

~ can turn warning messages on or off using this pragma.

.7 How to see the code expanded 'by the Preprocessor
ughout the chapter we have discussed all the concepts by explaining how the preprocessor expands
code. Now we'll tell you how to view the code after the preprocessing phase. The procedure
vary on different systems, we'll discuss it. for Turbo C and UNIX.

Turbo C, we have a utility(executable file) named cpp(C preprocessor). This utility creates a file
- contains the expanded source code. The name of this file is same as that· of source code file and

a ".i " extension. For example suppose t4e source code is present in file d:\myfile.c, then the
ded code would be present in myfile.i. We can create the expanded file at the command prompt

C:\TC>cpp d:\myfile.c

e source code contains #include directive, then we'll have to specify the path of include file~ F"or
pIe if c:\tc\include is path C!f included files then we have to write as-

C:\TC>cpp -Ic:\tc\inclu"de d:\myfile.c

-~ file myfile.i will be created i.n the directory where cpp is present. We can view this file using a
editor or by type cOl1}mand. To know more about the syntax of usage of cpp just type cpp at

command prompt.

IX, we can view the expanded code by using the option -E. With this option the output of the
_ rocessor is displayed on the terminal. If we use option -P, then the output of the preprocessor

ored in a file with the same name as source file but with a ".i " extension. We can use -I to inform
preprocessor about .the path of included files.

Exercise
- ume stdio.h is included in all programs.

#def ine MAX 5;
main ()
{-

printf{"%d",MAX) ;

·Ilir.

402 C in Depth

(2) #define MSSG printf("If you lapse, don't collapse\n U
);

main ()
{

,MSSG

(3) #define PROD (x,y) «xl * (y»
main ()
{

int a=3,b=4;
printf ("Product of a andb = %d", PROD (a,b)) ;

(4) #define A 50
#define B A+100
main ()
{

int i,j;
i=B/20;
j=500-B;
printf("i = %d, j = %d\n",i,jl;

(5) #define NEW_LINE printf("\n");
#define BLANK_LINES(n) {int i; for(i=O;i<n;i++). printf("\n");}
main ()
{

printf ("When you have a chance");
NEW_LINE
print f (" to embrace an opportun~ty") ;
BLANK_LINES (3)
printf("Give it a big hug");
NEW_LINE

(6) #define INFINITE while (1)
#define CHECK(a) if(a==O). break
main ()
{

int x=5;
INFINITE
{

printf ("%d \\,x- -) i

CHECK (x) i

(7) #define ABS (x) «x) <0 ?- (x) : (x))
main ()
{

int array[4]={l,-2,3,-4};

C Preprocessor

int *p=array+3 ;
while (p>=array)
{

printf ("%·d . ", ABS (*p)) ;
p- -;

. }

#define
main ()
{

printf ("If the lift to success is broken, ").
printf (".Try the stairs. ") .

oJ) #define CUBE (x) lx*x*x)
main ()
{

printf("%d\n",CUBE(1+2»;

::'0) #define CUBE (x) «x) * (x) * (x))
main ()
{

int i=l;
while (i<=8)

printf("%d\t",CUBE{i++»;

_l)#define SWAP(dtype,x,y) {dtype t; t=x+y, x=t-x, y=i-y;}

main ()
{

int a=l, b=2, x=3, y=4, s=25, t=26 i
SWAP(int,a,b)
SWAP(int,x,y)
SWAP(int,s,t)
printf("a=%d,b=%d,x=%d,y=%d,s=%d,t=%d\n",a,b,x,y,s,t) ;

:2)#define INC(dtype,x,i) x=x+i
main ()
{

int arr[5]={20,34,56,12,96},*ptr=arr;
INC(int,arr[2] ,3);
INC(int*,ptr,2);
printf("*ptr = %d\n",*ptr);

:3) #def ine INT int
main ()
{

403

404

INT a=2, *p=&a;
p ri n t f (" %d %d \ n" , a, *p) ;

(14) #define Y 10
main ()
{

#if X I I Y && Z
printf ("Sea in Depth\n");

#else
printf("See in depth\n");

#endif

(15)main(
{

int x=3,y=4,z;
z=x+y;
#include<string.h>
printf("%d\n",z) ;

(l6)#define DIF-F(FNAME, DTYPE, RTYPE) \
RTYPE FNAME(DTYPE X,DTYPE Y){ return X-Y;}
DIFF(diff_int,int,int)
DIFF(diff_iptr,int*,int)
DIFF(diff_float,f1oat,float) ;
DIFF(diff~fptr,float*,int);

main()
{

C in Depth

int iarr[5)={l,,,2,3,4,5},a,p,q; ~_

float farr[7)={1.2,2.3,3.4,4.5,5.6,6.7,7.8},b;
a=diff_int(iarr[4) ,iarr[l);
b=diff_float(farr[6J ,farr[2);
p=diff_iptr(&iarr[4) ,&iarr[l);
q=diff_fptr(&farr[4) ,&farr[1);
printf("a = %d, b = %.1f, p = %d, q %d\n",a,b,p,q);

(17)#define MAX 3
main()
{

printf ("Value of MAX is %d\n" ,MAX);
#undef MAX
#ifdef MAX

printf ("Have a good day");
#endif

..

(18) #define PRINT1 (message)
#define PRINT2 (message)

printf(message) ;
printf("message");

"Preprocessor

-define PRINT3 (message) printf (#message);
ain ()

, 405

PRINT1 ("If we rest,
PRINT2("If we rest,
PRINT3("If we rest,

we rust. \n")
we rust.\n")
we rust. \n")

define
:nain ()
{

show(value) printf #value " = %d\n", value) ;

int a=10,b=5,e=4;
show(a/b*e);

::)#define MACRO (a) if(a<=5) printf(#a"
main()
{

int x=6,y=15;
if (x<=y)

MACRO (x) ;
else

MACRO (y) ;

::)main (
{

#line 100 . "system.e"
printf ("%d %s\n", __LINE__ , __FILE__) ;

Answers

%d\n", a) ;

- .

This program will show errors since there is a semicolon after 5, and due to this after expansion
the printf statement looks like this- printf(" %d ", 5;);
If you lapse, don't collapse
There is a space between the macro name PROD and left parenthesis, so after macro expansion
the printf statement looks like this:

printf("Product of a and b = %d", (x, ~) ((x)*(y))(a, b));
Therefore the program gives error that x and yare undefined symbols.
i = 55, j = 550
The values are calculated as : i = A+100/20; U= 500-A+I00;
When Y0U have a chance
to embrace an opportunity

Give it a big hug
54321
432 1

406 C in Depth

(8) This program will give error, since the name of the macro is not a valid C identifier.

(9) 7
The macro call CUBE(1+2) is expanded as - (1+2*1+2*1+2)

(10) 6 120 504
The macro CUBE(i++) is expanded as ((x++) *(x++)*(x++)), and the values of such expressIOns
are undefined. So although we have got the output but these values may differ.

(11) a = 2, b = 1, x = 4, y = 3, S = 7, t = 26
The first two macro calls swapped the values, but the third one gave unexpected results.

The third macro call was expanded as-
{ int t; t = s+t, s = t-s, t = t-t; }

These calculations were performed using the variable t that is declared inside this block.
So the value of variable t that was defined outside the block remaips unchanged(26). The variab ~

t declared inside the block contains garbage value, so the variable s gets this garbage value.
(12) *ptr = 59
(13) 2 2
(14) See in depth
(15) This program will give many errors, all of them stating that declaration is not allowed here.

We know that after expansion, the #include directive is replaced by the contents of the file.
this case also the preprocessor inserts all the contents of file string.h after the statement z =
+y; The file string.h contains many declarations, and we know that in C, declarations are allo
only at the beginning of a block before any executable statement. So we get all these errors. T
program will compile correctly if we put the #include directive before all executable statem

(16) a = 3, b = 4.4, p = 3, q = 3
(17) Value of MAX is 3

(18) If we rest, we rust.

message"If we rest, we rust.\n"

(19) a/b*c = 8
(20) In this program we'll get the error of misplaced else. Since x <= y is true, so MACRO(x)

be expanded as-
if(x<=y)

if (x<=5) printf ("x %d\n" ,x) ; ;
else

if (y<=5) printf ("y %d\n" ,y) ; ;

The double semicolons cause the problem. A single semicolon is considered as a null state
so there are two statements in the if part, but they are not inside parentheses. So to compile
program correctly, we'll have to remove one semicolon from the macro expansion or fron:
macro call, or we may enclose the macro call inside parentheses.

(21) 100 system.c

Chapter 13

Operations on Bits

_ know that inside the computer; data is represented in binary digits called bits (0 and 1). Till now
ere able to access and manipulate bytes only. But some applications, such as system programming

. e manipulation of individu~l bits within a byte. In most high-level languages this facility is not
-- able, but C has tr.e special feature to manipulate indiviaual bits of a byte. This feature is implemented

gh bitwise operators that support bitwise operations. These bitwise operators are-

Operator Meaning

& bitwise AND

I bitwise OR
1\ bitwise exclusive OR (XOR)
~ One's complement

« bitwise left shift
» bitwise right shift

all the operators are binary, except the complement operator, which is unary. These bitwise operators
on data of integral types only i.e. char, int, short, long including both signed and unsigned types.

~en these operators are applied to signed types, the result may be implementation dependent, because
erent implementations represent the signed data in different ways.

e operators operate on each bit of the operand, so while using these operators we'll consider the
representation (bit pattern) of the operand. While writing the bit pattern, the numbering of bits

from 0 and they are numbered from right to left. For example if we have an integer variable
= Ox3C60, the binary pattern of this integer is 0011 11 00 0110 0000. The numbering of bits is-

15 14 13 12 1110 9 8 7 6 5 4 3 2 1·0

the rightmost(Olh) .bit is the least significant bit, while the leftmost(15Ih) bit is the most significant
A bit is on if it has value 1, while it is off if it has value O.

'n use a function bit-pattern() in our programs, that will take an integer as input and print the 16
binary pattern of that integer. The definition of this function is given in program P13.13. In our

408 C in Depth

examples, we'll represent the integers in hexadecimal, because it is easier to convert hexadecimal to
binary and vice versa.

All bitwise operators except the complement operator can be combined with the assignment operator
to form the compound assignment operators-

&= 1= «= »= /\=" , ,

13.1 Bitwise AND (&)

..

It is a binary operator and requires two operands. These operands are compared bitwise i.e. all the
corresponding bits in both operands are compared. The resulting bit is 1, only when the bits in both
operands are 1, otherwise it is O.

Boolean Table

Bit of operand! Bit of operand2 Resulting Bit

0 0 0

0 1 0
1 0 0
1 1 1

Let us take a = Ox293B and b = OxlA2F are two integer variables. The binary representations of these
variables and the result after performing bitwise AND operation is shown below-

a 0010 1001 0011 1011 (Ox293B)

b' 0001 1010 0010 1111 (OxlA2F)

a&b 0000 1000 0010 1011 (Ox082B)

/*P13.1*/
#include<stdio.h>
main()
{

int a,b; .
printf ("Enter values for a and b ") ;.
scanf("%d%d",&a;&b);
printf ("a = %d\t\t", a); bit_pattern(a);
printf ("b. = %d \ t \ t" ,b); bit_pattern (b) ;
printf("a&b = %d\t\t" ,a&b); bit_pattern(a&b);

If you want to enter and display the values of a and b in hexadecimal, then use %x. The definitio
of function bit_pattem() is given in program P13.13.

13.2 Bitwise OR (I)
The corresponding bits of both operands are compared and the resulting bit is 0, only when the bits
in both operands are O,otherwise it is 1.

erations on Bits

Boolean Table

Bit of operand 1 Bit of operand 2 Resulting Bit

0 0 0

0 1 1

1 0 1

1 I 1

The result of bitwise OR operation performed between variables a and b is shown below-

a 0010 1001 0011 1011 (Ox293B)

b 0001 1010 0010 1111 (Ox1A2F)

a I b 0011 1011 0011 1111 (Ox3B3F)

P13.2/
-include<stdio.h>
::rain ()

int a,b;
printf ("Enter values for a and b ") ;
scanf("%d%d",&a,&b) ;
printf{"a = %d\t\t",a); bit_p"attern(a);
printf("b = %d\t\t",b); bit_pattern(b);
printf("alb = %d\t\t",alb); bit_pattern(a!b);

13.3 Bitwise XOR (A)

409

The corresponding bits of both operands are compared and the resulting bit is 1, if bits of both operands
ave different value, otherwise it is O. ~.

Boolean Table

Bit of operand 1 Bit of operand 2 Resulting Bit

0 0 0

0 1 1

1 0 1

1 1 0

The result of bitwise XOR operation performed between variable a and b is shown below-,
a 0010 1001 0011 1011 (Ox293B)

b 0001 10 10 0010 1111 (Ox 1A2F)

a /\ b 0011 0011 0001 0100 (Ox3314)

/*P13.3*/
4include<stdio.h>
main()

bit_pattern(a) ,
bit_pattern(b) ,
bit_pattern(aAb) ,

410

int a,b,
printf ("Enter values for a and b
scanf("%d%d", &a, &b);
printf("a = %d\t\t", a),
printf("b = %d\t\t", b),
printf("aAb = %d\t\t", aAb),

") ;

. C in Dep

When the bitwise operators &, I , 1\ operate on two operands of different sizes, then the size of small
operand is increased to match the size of larger operand. For example if there are two operands
sizes 16 and 32 bits, then the 16-bit operand will be converted to 32 bits. The extra bits are add
to the left of the smaller operand. If the smaller operand is unsigned then all these extra bits are fill
with zeros, and if it is signed then these bits are filled with the sign bit.

13.4 One's Complement (,..,)
One's complement operator -is a unary operator and requires only one operand. It negates the value c
the bit. If the bit of the operand is 1 then the resulting bit is 0 and if the bit of the operand is 0 the
the resulting bit is 1.

Boolean Table

Bit of operand Resulting Bit

0 1

1 0

a

~a

b
~b

0010 1001 0011 1011

1101 0110 11000100

0001 1010 0010 1111

1110 0101 1101 0000

(Ox293B)

(OxD6C4)

(Ox1A2F)

(OxE5DO)

/*P13.4*/
#include<stdio.h>
main(
{

int a;
p:cintf("En'ter value for a ");
scan f ("% d" , &a) ;
printf("a = %d\t",a), bit_pattern(a) ,
printf("-a = %d\t",-a); bit_pattern(-a),

When the complement operator is applied to an operand twice, then result is the original operand i
~(~a) is equal to a. This feature of complement operator can be used for' encrypting and decryp
data. To encrypt the data, we can apply complement operator to it, and to decrypt the data i.e. to
back the original data we can apply the complement operator to the encrypted data. For exampl

Original data 0000 1111 0101 0011

Encrypted data : 1111 0000 1010 11 00 (By applying ~ to original data)

rations on Bits

rypted data : 0000 1111 0101 0011 (By applying ~ to encrypted data)

3.5 Bitwise Left Shift («)

411

cis operator is used for shifting the bits left. It requires two operands. The left operand is the operand
ose bits are shifted and the right operand indicates the number of bits to be shifted. On shifting the

• left, an equal number of bit positions on the right are vacated. These positions are filled in with
its. Let us take an integer variable a = Ox1346. The binary representation of x is-

0001 0011 0100 0110

- w we'll find out a « 4

Initial Bit pattern Bit pattern after left shifting

10001 0011 0100 0110~· 0001

'----.r'
Lost Bits

I 0011 0100 0110 0000 I
'--y---J

Bits filled

shifting all bits to the left by 4, the leftmost 4 bits are lost while the rightmost 4 bit positions become
_ pty which are filled with 0 bits.
~P13.5*/

-~nclude<stdio.h>

-=in ()

int a;
printf ("Enter value for a : ");
scanf ("%d", &a) ;
printf("a %d\t",a); bit pattern(a);
a=a«i;
printf("a %d\t",a); bit pattern(a);

3.6 Bitwise Right Shift (»)
's operator is similar to the left shift operator, exceptthat it shifts the bits to the right side. On shifting

p bits right, an equal number of bit positions on the left are vacated. These positions are filled in with
its in unsigned integers. We'll again take a variable a = Ox1346, and this time we'll find out a »

Initial Bit pattern Bit pattern after right shifting

I 0000 0001 0011 01001 0110

'--y---J '--y---J
Bits filled Lost Bits

Right shift in an unsigned integer

right shift if the first operand is a signed integer, then the result is compiler dependent. Some compilers
ow logical shift while others may follow arithmetic shift.

h

412 C in Depth

Logical shift - The vacated bits. are always filled with zeros.

Arithmetic shift - The vacated bits are filled with the value of the leftmost bit in the initial bit pattern.
If the leftmost bit is 1, then the vacated positions are filled with 1, and if the leftmost bit is 0, then
the vacated positions are filled with 0.

The following two examples show arithmetic shift in signed integers. In first case the leftmost bit is
1 so the vacated bits are filled with 1, and in the second case the leftmost bit is 0, so the vacated bits
are filled with 0.

--.j 1000 10100011 1011

--.j 0100 10100011 1011 I

11111 1000 101000111 1011

I0000 0100 1010 0011 1011

•

_Arithmetic right shift in signed integers

Actually the leftmost bit represents the sign bit. If the number is negative, then it is set to 1. So .~

other words we can say that, in arithmetic shift the vacated bits are filled with the sign bit.

We know that expressions like x/2 or x*5 do not change the value of x , similarly x«4 or x»3 wiL
not change the value of x. If we write x = x«4 , then only the value of x will be changed.

While using left shift and right shift operators, the result is undefined if the right operand is negati
or it is more than the number of bits used to represent the left operand.
/*P13.6*/
#include<stdio.h>
main ()
{

int a;
printf ("Enter value for a ") ;
scanf ("%x" ,&a) i
printf("a %x\t",a); bit_pattern(a);
a=a»2;
printf ("a %x\t", a); bit_pattern(a);

13.7 Multiplication and Division by 2 using shift operators
The effect of shifting one bit right is equivalent to integer division by 2, and the effect of shifting
bit left, is equivalent to multiplication by 2. So we can use shift operators to multiply and 4ivide inte."
by power of 2. For example to multiply an integer by 22

, we~ll shift it left by 2 bits, tdmultiply
23 we'll shift it left by 3 bits. Similarly to divide an integer by 22, we'll shift it right by 2 bits, to di .
by 23 we'll shift it right by 3 bits.

In the case of right shift, if the compiler follows logical shift the~ the effect of division by· 2 is
seen in signed integers.

erations on Bits 413

I Statement Bit Pattern of a Decimal value of a

i) a = 45; 0000 0000 0010 1101 45

Dj a = a « 1; 0000 0000 0101 1010 90 (= 45*2 1)

Iii) a = a « 2; 0000 0001 0110 1000 360 (= 90*22)

iv) a = a « 5; 0010 1101 0000 0000 11520 (=360* 2S
)

y) a = a « 3; 0110 1000 0000 0000 26624 (!=11520*23)

'i) a = a » 1; 0011 0100 0000 0000 13312 (=26624 1.2 1)

ill) a = a» 6, 0000 0000 1101·0000 208 (=13312/26
)

iii) ,a = a » 4; 0000 0000 0000 1101 13 (=208 1 24)

IX) a = a » 1; 0000 0000 0000 0110 6 (=13 1 2 1)

- the statement (v), the effect of multiplication by 23 is not seen, this is because a bit with a value
: 1 has been dropped from the left. So in the case of left shift, if a bit with value of 1 is shifted
d lost, then the effect of multiplication by powers of 2 is not seen.

statement (ix), value of a is 13 and it is shifted right by 1 bit, the result is 6 which shows that the
ainder. is discarded.

3.8 Masking
king is an operation in which we can selectively mask or filter the bits of a variable, such that some
are changed according to our needs while the others remain unchanged. Through masking, we can

=anipulate bits in a bit pattern and perform operations such as testing a bit, inverting a bit, switching
or off a bit. Masking is performed with the help of bitwise operators. The bit pattern to be masked

- taken as the first operand and the second operand is called mask. The mask is selected according
our needs.

further discussion, we will take an arbitrary bit pattern of 16 bits and show different types of masking
it.

b lS b l4 b l3 b l2 bilblOb9bg b7 b6 bsb4b3b2b , bo
Here b ls. b 14 b l. bo are bits and they may be 0 or 1.

3.8.1 Masking Using Bitwise AND

b1S b l4 b l3 biZ b ll b
lO

b9 bg b7 b bs b4 b3 bz b l bo (Original Value)
6

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 (Mask)

0 0 0 0 b ll b lo b bg 0 0 0 0 b3 bz b l bo (New Value)9

~ere we can see that whenever there is a 0 in the mask, new bit value becomes 0 while the new bit
ue remains unchanged when there is a 1 in the mask.

,-e can switch off any bit by using & operator. For example if we want to switch off the last 4 bits
a bit pattern, we can 'choose the mask such that last four bits are O.

a = a & OxFFFO

414 C in Depth

(Original Value)

(~ask)

(New value)

b
lS

b
l4

b
l3

b
l2

b
ll

b
lo

b
9

bs b
7

b
6

b
s

. b
4

b
3

b
2

b
l

b
o

(Original Value)

1 1 1 1 1 1 1 1 1 1 0 0 0 0 (Mask)

b
ls

b
l4

bl) b
l2

b
ll

b
lO

b
9

bs b
7

b
6

b
s

b
4

0 0 0 0 (New Value)

Later in this chapter, we'll see a better method to switch off bits using bitwise AND and complement
operator, .

Bitwise AND operator is generally used to test whether a particular bit is on or off. Suppose we want
to test the Slit bit, we will select the mask with only 5th bit on-

b
lS

b
l4

b
l3

b
l2

b
ll

b lO b9 bs b7 b6 bs b4 b3 b2 bl bo

0000000000100000

o 0 0 0 0 0 0 0 0 O. bs 0 0 0 0 0

If 5th bit in the original bit pattern is 0, then the new value will be zero, and if 5th bit in original bit
pattern is 1, then the new value will be non zero
mask = Ox20;
if ((a&mask) ==0)

printf("5th bit is off");
else

printf("5th bit is on");

- So by choosing an appropriate mask and using bitwise AND operator, we can test whether a bit is on
or off. We can retrieve bit value by using if.. .else, conditional operator or shift operator. Let us see
different methods for retrieving 5th bit-

mask = Ox20;
1. . if ((a&mask) ==0)

bit=O;
else

bit=l;

2. bit= (a&mask)?l: 0;

3. bit=(a&mask»>5;

/*P13.7 A program to test 5th_bit*/
#include<stdio.h>
main()
{

int' a,bit,mask=Ox20;
printf ("Enter an integer ") ;
scanf ("%d", &a) ;
printf("a' = %d\t",a); bit_pattern(a);
if ((a&mask) ==0)

bit=O;
else

bit=l;
printf("5th bit is %d\n",bit);

Operations. on Bits' 415

13.8.2 Masking Using Bitwise OR

b lS b l4 b l3 biz b l] blo b9 bg b
7

b6 bs b4 b
J

bz b l bo (Original Value)

0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 (Mask)

b ls b l4 b l3 b
l2

1 1 1 b
7

b
6 bs b4 1 1 1 1 (New Value)

ere we can see that whenever there is a 1 in the mask, new bit value becomes 1 while the new bit
~ue remains unchanged when there is a 0 in the mask.

e can use bitwise OR operator to switch on a particular bit. The mask is chosen in such a way that
e bits to be switched on should be 1 and rest of the bits should be o.

~uppose we want to switch on the 5th bit

b]S b]4 b 13 biz b l! blo b9 bg . b
7

b6 bs b4 b3 bz b l bo (Original Value)

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 (Mask)

b ls b l4 b
13 biz bll b lo b

9
bg b

7
b6 1 b4 b

J
bz b l bo (New Value)

mask = Ox20;

a = a I mask;
P13.8 A program to switch on the 5 th bit/

;:nclude<stdio.h>
in ()

int a,bit,mask;Ox20;
printf ("Enter an integer
scanf ("%d" ,&a) ;
printf (."a = %d\t" ,a);
a=almask;
printf ("After switching
printf("a = %d\t",a);

\\) ;

bit_pattern(a) ;

on 5th bit, the
bit_pattern(a) ;

value of a is : \n") ;

.8.3 Masking Using Bitwise XOR

b lS b l4 b l3 biz b l] blo b9 bg b7 b
6

bs b4 b3 bz b l bo (Original Value)

0 (j 0 0 1 1 1 1 0 0 0 0 1 1 1 1 (Mask)

b lS b l4 b l3 biz hll b
lO

b9 bg b7 b6 bs b4 b3 b2 b l bo (New Value)

- e we can see that whenever there is 1 in the mask the corresponding bit value is inverted while
new bit value remains unch~nged when there is a 0 in the mask.

have seen earlier that the complement operator(-:--) complements all the bits in a number. But if we
t to complement some particular bits in a number, then we can, use bitwise XOR operator.

- e mask should be chosen in such a way that the bits to be complemented should be I;; rest of the
should be o.

suppose we want to invert the value of 5th bit.

(5th bit changes to 0, and all other bits unchanged)
(5th bit changes to 1, and all other bits unchanged)
(5t~ bit changes to 0, and all other bits unchanged)

416 C in Depth

, b
lS

b
l4

b
l3

b
l2

b
ll

b
lO

b
9

bg b7 b6 bs b
4

b
3

b
2

b, bo (Original Value)

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 (Mask)

b
lS

b l4 b13 b l2
b ll b lO b9 bg b7 b6 bs b

4
b

3
b2 b, bo (New Value)

mask = Ox20;

a = a 1\ mask

So we can use this operator to toggle bits between values 0 and 1. For example if we have an integ
~llriable a, and we want to toggle its 5th bit. .

S~~pose initially 5Ul bit in variable a is 1
i~ask = Ox20;
a = a 1\ mask,
a = a 1\ mask
a = a 1\ mask

Fromthe above operations we can also see that when an operand is XORed with a value twice, re
is same as the original operand. This feature can be used for encryption..

For example. if initial value of a variable var = OxF13A
var = var 1\ Ox1F; (Encryption)
var = var I\Ox1F; (Decryption)

After first statement the value ofvar becomes OxF125, while after second statement we get back ori
value of var (OxF13A).
/*P13.9 A program to toggle' 5th bit using bitwise XOR opertor*/
#include<stdio.h>
main()
{

int a,bit,mask=Ox20;
printf ("Enter an integer ") ;
scanf ("%d", &a) ;
printf("a = %d\t",a); O'bit_pattern(a);
a = a "mask;
printf("a = %d\t",a); bit_pattern(a);
a = a"mask;
printf("a = %d\t",a); bit:-pattern(a);

When a value is XORed with itself the result is zero, this is ~bvious since all corresponding bits
be same. For example value of expressions like varl\var will be zero. This feature of XOR op
can be utilized to compare two values for equality.

13.8.4 Switching off Bits Using Bitwise AND and Complement Operator
. ° I .

We have seen that bits can be switched off using bitwise AND operator. Let us see what sort of po
problem arises when we use bitwise AND operator.

Suppose we want to switch off the 5th bit of an integer variable a, we can take the mask as

1111 1111 1101 1111 (OxFFDF)

erations on Bits 417

a = a & OxFFDF;

_-ow suppose we use this code on a computer that uses 32 bits to store an integer, then OxFFDF would
_ represented as-

0000000000000000 1111 1111 1101 1111

_- w this mask will switch off the 16 leftmost bits also, which is not intended. So on a computer using
=_ bits for an integer, the appropriate mask to switch off the 5th bit should be-

Illl Illl 1111 1111 1111 1111 1101 lll1 (OxFFFFFFDF)

a = a & OxFFFFFFDF;

- would be better if we could write the same line of code for both type of computers. We can do
's by combining the complement operator with the AND operator as-

a = a & ~Ox20

a computer using 16 bits for an integer, this is interpreted as

a ~ a & 11111111 1101 llU
_ d on a computer using 32 bits for an integer, this is interpreted as

a = a & 1111 1111 1111 1111 1111 1111 1101 1111
"P13.l0 A program to switch off the 5 th bit*/

=:nclude<stdio.h>
- in ()

iht a,bit,mask=Ox20;
printf ("Enter an integer
scanf ("%d" ,&a) i

printf("a = %d\t",a)i
a=a&-:maski
printf ("After switching
printf("a = %d\t",a);

) ;

bit_pattern(a) ;

off the 5 th bit,
bit_pattern(a) ;

the value of a is : \n") ;

_'ow let us summarize the different manipulations on 5th bit in an integer variable a-
mask = 'Ox20; .

Test 5th bit in variable a : a· & mask
Switch or 5th bit in variable a: .a = a I mask;
Switch off 5th bit in variable a: a = a & ~ mask;
Invert 5th bit in variable a : a = a /\ mask;

!milarly we can manipulate any bit by these operations, we just have to choose the mask appropriately.
::-or manipulating 6th bit: mask = Ox40 (0000 0000 01 00 0000)
::-or manipulating 9th bit : mask = Ox200 (0000 0010 0000 0000)
::-or manipulating 3rd and 6th bits : mask = Ox48 (0000 0000 0100 1000)

-e can calculate the mask by left shifting integer 1 by position of bit.
mask = 1 « bitposition;
For manipulating 4th bit: mask = 1«4 (ooqo 0000 0001 0000)
For manipulating 6th bit : mask = 1«6 (0000 0000 0100 0000)

418

/*P13.ll Program to test any bit in an integer*/
#include<stdio.h>
main()
{

int a,bit,mask,bitposition;
print f("Enter ian integer) ;
scanf("%d",&a) ;
printf ("Enter the bit position) ;
scanf("%d",&bitposition);
mask=l«bitposition;
printf("a = %d\t",a); bit_pattern(a-);
if ((a&mask) ==0)

bit=O;
else

, bit=l;
printf("The bit at -position %d is %d\n",bitposition,bit);

C in Depth

If we want to manipulate all ,bits one by one, them we can use a loop, for example this program will
switch on all the bits in the ~nteger variable' a. '

/*P13.l2 Program to switch on all the bits in an integer, variable*/
#include<stdid.h>
main()
{

int a, mask, i;,
printf ("Enter the
scanf ("%d" ,&a) ;
printf("%d\t", a);
for(i=0;i<=15;i++)
(

value of a ");

bit_pattern(a);

mask=l«i;
a=alma,sk; /*switch on the ith bit*/

}

printf("%d\t",a) ; bit_pattern(a);

There is one other way also to calculate the appropriate mask for a particular bit position. We can
an array of masks as-

unsigned int arr_mask[] = { Ox 1, Ox2, Ox4, Ox8, Ox 10, Ox20, Ox40, Ox80, Ox 100, Ox200, Ox400, Ox8
Ox 1000, Ox2000, Ox4000, Ox4000};

Now the mask for manipulating any bit can be calculated as-'

mask = arr_mask[bitposition);

For example to switch on the 4th bit we can write,

x = x I arr_mask[4);

13.9 Some additional Problems

Problem 1

Write a program to print bitpatt~rn of a 16 bit integer.

Operations on Bits 419

_~ow we are in a position to write the definition of the function bit-pattern(), that we have been using
- I now. Printing the binary pattern of an integer requires testing of each bit in the integer. The bit
umbering is from right to left, but we'll have to print the bits from left to right so firstly 15th bit will

printed, then 14th and so on till Oth bit. So we will start testing bits from the 15th bit onwards. To
-est 15 th bit, mask should be 1«15. Similarly to test 14th bit, mask should be 1«14 and so on.

P13.13 Printing the binary. pattern of a 16' bit integer/
include<stdio.h>
ain ()

int a;
printf ("Enter an integer ") ;
scanf ("%d" ,&a) ;
bit_pattern(a) ;

;,it_pattern(int a)
{

int i,mask;
for (i=15; i>=O; i- -.)
{

mask=1«i;
if ((a&mask) == 0)

printf ("0");
else

printf("1");

printf ("\n");

In pt iteration mask is

In 2nd iteration mask is
In 3rd iteration mask is

In: last iteration mask is

1000 0000 0000 0000
0100 0000 0000 0000
0010 0000 0000 0000

0000 0000 0000 0001

15th bit is tested and printed
14th bit is tested and printed ...
13 th bit is tested and printed

oth bit is tested and printed

To make this program portable, we can modify the for loop as

for(i = sizeof(int)-1 ; i>=O; i- -)

Problem 2

Write a program to find whether the number is even or odd, using bitwise operators.

A number will be odd if its least significant bit(rightmost) is 1 and it will be even if its least significant
bit is O. This means we just have to test whether the least significant bit is 1 or O. We know that the
bitwise AND operator is suitable for testing bits. Now we have to choose an appropriate mask. Since
we have to check the rightmost bit, so we will take a mask in which the rightmost bit is 1 and all
other bits are O.
/*P13.14 Program to find whether a number is even or odd*/
#include<stdio.h>

420

main(

int num;
int mask=Oxl;
printf ("Enter a number ") ;
scanf("%dH,&num) ;
If((num&mask) ==0)

printf ("Number is even\n H);
else

printf ("Number is odd\n H);

Problem 3

C in Depth

Write a program that inputs a binary pattern less than or equal to 16 bits and converts it to an intege
/ *P13 .15 Program to convert a binary pattern to an integer* /
#include<stdio.h>
main ()
{

char bit;·
int i,num=O;
printf("Enter any bit pattern less than or equal to 16 bits ·:\n H

]

for(i=0;i<=15;i++)
{

bi t=getchar () ';
if(bit=='O')

num=num«l;
else if(bit=='l')

num=(num«l) +1;
else

break;
}

printf("Hexadecimal %x\nH,num);
printf("Decimal %d\nH,num);

Problem 4

Write a program to swap the first 8 bits with the last 8 bits in a given unsigned 16 bit integer.

For example if initially the bit pattern is - 1000 1111 00110001

After swapping it should become - 0011 0001 1000 1111

This can be achieved as-
x 1000 1111 0011 0001
x«8 0011 0001 0000 0000
x»8 0000 0000 1000 1111
x«8 I x»8 0011 0001 1000 1111

If the integer is unsigned then this method will work properly but if the integer is a signed neg,
number, then according to arithmetic shift after right shifting, the leftmost 8 bits will be filled with

ations on Bits 421

d we will not get our desired result. To avoid this problem we can force the leftmost 8 bits-to
zero after the right shift. So now this will be as: '.

x = (x«8) I ((x»8) & OxOOFF)
_13.16 Program to swap first 8 bits with the last 8 bits in a 16

__ = integer* /

-=clude<stdio.h>
-::n ()

int num, i;
printf ("Enter number in. hexadecimal ") ;
scanf ("%x" , &num) ;
printf ("Before swapping, num %x\n" , num) ;
bit_pattern(num);
num=(num«8) I ((num»8)&OxOOFF)
printf ("After swapping, num = %x\n", num) ;
bit_pattern(num);

\

e a program to swap the values of 2 variables using bitwise XOR.
_13.17 Swapping the values without using a temporary variable through

__=wise XOR*/

- clude<stdio.h>
- ':n ()

int x,y;
printf·("Enter values for x and y
scanf("%d%d",&x,&y) ;
printf {"x = %d, y %d\n" , x, y) ;

x=x"y;
y=x"y;
x=x"y;.
printf ("x %d, y %d\n" , x, y) ;

oblem 6

\\) i

- e a program to print the bit pattern of 2's complement of a number

_ know that the 2's complement can be found out by adding 1 to the one's complement. Another
to obtain the 2's complement is that, scan the bit pattern from right to left, and invert all the b,its
the first appearance of a bit with value 1. For example-

Bit pattern 0000 0001 0110 0000

2's complement 1111 1110 1010 0000

_13.18 Program to print the two's complement of a number. k
/

:- clude<stdio.h>
<n()

422

int num, i, mask;
pi-intf ("Enter a number ") ;
scanf("%dH,&num) ;
printf("Two'S complement is %d\nH,-num+l);

for(i=O;i<=15;i++)
{

I*Fir;td a bit with value 1*1

C in Dep

mask=l«i;
num=num"mask; I*Invert the bit*1

}

printt ("Two's complement is

Problem 7

%d\n H, num) ;

Write a function that rotates' bits to right by n positions.

Initial bit pattern 0000 0000 0000 1101

After rotating right by 4 bits 1101 0000 0000 0000

Similarly write a function that rotates bits to left by n positions.

. Initial bit pattern 1001 0000 1001 0011

After rotating left by 3 bits .1000 0100 1001 11 00
1*P13 .19 * 1
#include<stdio.h>
main(
{

in t n urn, n, i , bit;
printf ("Enter number in hexadecimal ") ;
scanf("%xH,&num) ;
bit_pattern(num) ;
printf ("Enter number of Positions· to be rotated ") ;
scanf("%dH,&n) ;
n=n%16;
num=rotate_right(num, n);
printf ("Number after right rotation is %x\n H, num) ;
bit_pattern(num) ;
num=rotate_left(num,n) ;
printf ("Number· after left rotation is %x\n H,num) ;
bit_pattern(num) ;

)

rotate_right (int num, int n)
{

int i,lsbit;

1* Test LSB *1

ations on Bits

for(i=l;i<=n;i++~

{

lsbit=num&1?1:0;
num=num»l;
if (lsbit==O)

num=num&-(1«15); I*Switch off MSB*I

else
num=numl (1«15); I*Switch on MSB*I

return num;

__:::ate_left (int num, int n)

int i,msbit;

for(i=l;i<=n;i++)

msbit=num&(l«15)?1:0; I*Test MSB*1
num=num«l;
if (msbi t== 0)

num=num&-l; I*Switch off LSB*I
else

num=num!l; I*Switch on LSB*I

return num;

oblem 8

423

-te a function mult(num, n, err) that uses the shift operators » and « to compute the value of
* 2"). Assume that both num and n are unsigned positive integers and are 32 bits in size~ The

• parameter is set by the function to zero if calculation is successful and 1 if an overflow occurs..
- overflow occurs when the resultant value doesn't fit in the 32 bit unsigned integer. Do not use add,

tract, multiply or divide to compare the result.
?13 . 20 * 1

:- clude<stdio.h>
-in ()

unsigned int num, n, err=O;
printf ("Enter the number and power of 2 ") ;
scanf ("%u%u" ,&num, &n) ;
mult(num,n,err) ;

_t (int num, int n, int err)

unsigned int resu1 t=num;
.while(n>O)
{

num=num«l; I*Multiply by 2*1
n- - i

if (num<result)

-----------------------~--_.-

424

err=l;
break;

result=num;
}

if (err==l)
printf ("Overflow\n");

else·

printf("Result = %u\n",result);

C in Depth

Now we know very well how to manipulate individual bits within a byte. This bit manipulation is usefi
in maintaining boolean flags. For example we can use a charaCter variable to hold 8 flags or an integ
variable to hold 16 flags. Each bit can be used to represent a flag. This will definitely save memo
when many flags are to be used in a program and als6 it is easy to maintain s,ingle variable for seve
flags. We can test, switch on or off, toggle any individual flag by bitwise operators. Different m
is taken for manipulating each flag. To increase readability, generally each mask corresponding to· a fl
is given a name using #define. Let us take an example and understand how this is done. We'll decl
a variable of unsigned integer type, and then we'll use the individual bits to represent different flag
associated with the attributes of a file. The variable is declared as-

unsigned int flags;

Now we'll use 10 bits of this variable to represent 10 different fl~s.

i
Terminal Incoming EOF line Write

Outgoing Binary Error Mallocd Read

To increase readability, we'll give a name to each mask corresponding to these bits.

#define F RDWR Ox0003

#define FREAD OxOOOI

#define F WRIT Ox0002

#define F BUF Ox0004

#define F LBUF Ox0008

#define F ERR OxOO 10

#define F EOF Ox0020

#define F BIN Ox0040

#defihe F IN Ox0080

#define F OUT OxOl00

#define F TERM Ox0200

/* Read/write flag

/* Read only file

/* Write only file

/* Malloc'ed Buffer data

/* line-buffered file

/* Error indicator

/* EOF indicator

/* Binary file indicator

/* Data is incoming

/* Data is outgoing

/* File is a terminal

Oth and }5t bit */

Oth bit */

}'I bit */

2nd bit */

3rd bit*/
4th bit*/

5th bit*/

6th bit*/

7th bit*/

8th bit*/

9th bit */

rations on Bits

- w we can perform masking operations to manipulate the different flags like this
_0 switch on error flag* I

=:ags=flagsl_F_ERR;

o switch off write flag* I
=:ags=flags&-_F_WRIT;

"':'0 toggle incoming flag*/
=:ags=flagsA_F_IN;

_0 test EOF flag* I
_=(flags&_F_EOF)==O)

printf("EOF flag is not set ");

printf ("EOF flag is set ");

425

we'll take another example in which a variable named permissions will contain information about
~ different access permissions given to different ~lass of users. There are three types of users viz.

er, group, others, and there are four types of permissions that can be· given to these users viz.
write, append, execute.,

Others Group Owner
r.----'A'---......" r.----'A'---....." r.----'A-----."

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

E A W R E A W R E A W R

= masks corresponding to these bits can be named as:

#define R OWNER OxOOOl /* Oth bit */

#define W OWNER Ox0002 /* 1't bit */

#define A OWNER Ox0004 /* 2nd bit */

#define E_OWNER Ox0008 /* 3rd bit*/

#define R GROUP OxOOlO /* 4th bit*/

#define W GROUP Ox0020 /* 5th bit*/

#define A GROUP Ox0040 /* 6th bit*/

#define E GROUP IN Ox0080 /* 7th bit*/

#define R OTHERS Ox0100 /* 8th bit*/

#define W OTHERS Ox0200 /* 9th bit */

#define A OTHERS Ox0400 /* 10th bit*/

#define E OTHERS Ox0800 /* 1ph bit */

unsigned int permission;

permission = Ox 19F;

426 C in Depth

If the size of a bit field is n, then the range of values that the bit field can take is fr0111 0 .

13.10 Bit Fields

unsigned a:2;
unsigned b:5;
unsigned c:l;
uns{gned d: 3;

/*Invalid*/

Bit field Size in bits Range of values

a 2 o to 22-1(0 to 3)

b 5 o to 25-1 (0 to 31)

c 1 o to 2'-1 (0 and 1)

d 3 o to 23-1 (0 to 7)

scanf("%d", &var.a);

} ;

Here the structure has four bit fields a, b, c and d. The sizes of a, b, c and dare 2, 5, 1 and:
respectively; The bit fields can be accessed .like other members of the structure using the dot ope
Whenever they appear inside expressions, they are treated like integers(of smaller range). The
some vaiid expressions using bit fields.
struct tag var;
var.a=2;
printfl"%dn,var.bl;
x=var.a+var.b; "
iflvar.c==11

printf I "Flag is on\nn I;

It would be invalid to assign any value to a bitfield outside its range, for example-

var.b = 54; /*Invalid*/

We can't apply sizeof and address operators to bit fields. So we can't use scanf to input
in a bit field.

We have seen how to access and manipulate individual bits or group of bits using bitwise operat(
Bit fields provide an alternative method of accessing bits. A bit field is a collection of adjacent bi~

is defined inside a structure but is different from other members because its size is specified in tel
of bits. The data type of. a bit field can be int, signed int or unsigned int.

Let us take an example that shows the syntax of defining bit fields.
struct tag {

After this statement owners will get all pennissions, group will get read and execute pennission, an
others will get only read permission.

To grant execute permission to others we can write-

pennission = permission IE_OTHERS; /*Switch on 11th bit*/

To take away read permission from group we can write-

pennission = pennission & ~R_GROUP; /*Switch off 4th bit*/

erations on Bits 427

'" may input the value into a temporary variable and then assign it to the bit field.

scanf("%d", &temp);

var.a = temp;

•we have pointer to structure then arrow operator(-» can be used to access the bit fields. Code using
e1ds is easier to understand than the equivalent masking operations, but bitfields are considered non
ble as most of the issues related with them are implementation dependent.

-e had mentioned that the data type of bit nelds can be int, signed int or unsigned int. A plain int field
y be treated as signed by some compilers while as unsigned by others. So for portability, it is better
clearly specify signed or unsigned in the declaration of bit fields. If a bitfield is defined as signed,

en it should be at least 2 bits long because one bit is used for sign.

e direction of allocation of bit fields within an integer is also implementation dependent. Some C
pilers allocate the bit fields from right to left, while others may allocate them from left to right.

• the bit fields are assigned from right to lert, then the first field occupies the least significant bit. If
e bit fields are assigned from left to right, then the first field occupies the most significant bit.

15-14 13 12 11 10 9 8 7 6 5 4 3 2 0

Four bit fields assigned from right to left
15 14 13 12 11 10 9 8 7 6 5 4 32 0

I Four bit fields assigned from left to right

_ e other implementation dependent issue about bit fields is that whether they can croSs integer boun<!aries
_ not. For example consider this structure-

struct tag{
unsigned a: 5;
unsigned b: 2;
unsigned c: 12;

} ;

_ e first two fields occupy only 7 bits in a 16 bit integer, ~o 9 bits can still be used for another bit
- eld. But the bits needed for next bit field is more than 9. Some implementations may start the next
-eld(c) from a new it:lteger, while others may just place the next field in 12 adjacent bits i.e. 9 unused
- m the previous integer and 3 bits from the next integer.

15 14 13 12 I I 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 II 10 9 8 7 6 5 4 3 2 1 0

Bit fields cross integer boundary

428 C in Depth

15 14 13 12 II 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit fields do not cross integer boundary

We can define unnamed bitfields for controlling the alignment of bitfields within an integer. The s'
of unnamed bitfield provides padding within the integer.
struct tag{

unsigned
unsigned
unsigned
unsigned

a: 5;
b: 2;

: 9; / *
c: 12;

padding within first integer' * /

} ;

Here the unnamed bitfield !ills out the 9 unused' bits of first integer, so the bitfieldc starts with
second integer. Since these 9 bits don't have any name, so they can't be accessed from theprogran

We can also take the size of the unnamed bitfield zero, so we have no need to provide the padditJ
and next bitfield will start with second integer.
struct tag{

} ;

unsigned a
unsigned b
unsigned
unsigned c

5 ;
2- ;
0;
12; /*this field starts from next integer'

Now we'll take the example of file permissions that we had seen earlier using bitwise operators.
struct permission
{

unsigned r_owner: 1;
unsigned w_owner:'l;
unsigned a_owner: 1;
unsigned e_owner: 1;
unsigned r_group:1;
unsigned w_group: 1;
unsigned a_group: 1;
unsigned e_group: 1;
unsigned r_others: 1;
unsigned w_others: 1;
unsigned a_others: 1;
unsigned e_others: 1;

} ;

struct permissions perm = {I, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, O} ;

After this statement owners will get all permissions, group will get read and' execute permission,
others will get only read permission.

Now we can write statements to grant and take permissions like this-

perm.e_others = 1; /*grant execute permission to others*/'

erations on Bits

perm.r_group = 0;

\

/*take away read permission from group*/

Exercise

429

me stdio.h is included in all programs.
:) main ()

{

int x=5,y=4;
if(xllY)

printf ("x&y

:) main (
{

%d, x&&y '%d\n" ,x&y,x&&y);

int x=5,y=13,z;
z=x"y;
printf(~z=%d\n",z);

:) main (
{

int x;
x=(OxFF»8)«8;
printf("%x\n",x) ;

-=) main (
{

int k;
k= ((3 < < 4) " (9 6 > >1)) ;
printf("%d\n",k) ;

::) main (
{

int k=OxC9FB;
k&=- (1«5);
printfl"%x\t",k);
kl=(1«2) ;
printf("%x\t",k) ;
k"=(1«14) ;
printf("%x\n",k) ;

int x=Ox1F;
x«2.;
printf("%x ",x);
x»2;
printf("%x\n",x);

/*1100 1001 1111 1011 * /

430

(7) main (
{

C in Depth

unsigned int arr_mask[l={ Ox1,Ox2,Ox4,Ox8,Ox10,Ox20,Ox40,
Ox80,Ox100,Ox200,Ox400,Ox800,
Ox1000,Ox2000,Ox4000,Ox4000}~

int i /num=Ox3 8F;
for (i=l; i>=O; i- -)

num&arr_mask[il ? printf("-l."·) :printf("O");
printf ("\n");

}

(8) main(
{

int num=OxAO 1D, pos'=3, bi t;
int mask=l«gos;
bit= (num&mask) »pos;
p~intf("%d",bit);

(9) main(

int i,bit,num=Ox238E;
unsigned int mask;
for (i=15; i>=O; i- -)
{

mask=l«i;
bit=(num&mask»>i;
printf("%d",bit) ;

(lO)main(
{

int num=Ox1F, p-os=3, bi t;
bit=(num»pos)&l;
printf("%d\n",bit) ;

(11)main (
{

int i, num=OxAODF
for(i=15;i>=O;i- -)

printf ("%d" , (num»i) &1) ;_

(12)main(
{

int i,num=Ox1A3B;
unsigned int mask;

Operations 011 Bits

rnask=1«15;
for(i=15;i>=O;i- -)
{

(nurn&rnask) ? printf("l") :printf("O");
rnask=rnask»l;

Answers

431

(1) x&y = 1, x&&y = 1
(2) z = 8

(3) 0

(4) 0

3«4 evaluates to 48, 96»1 also evaluates to 48, and 481\48 evaluates to O.
(5) c9db c9df 89df

1«5 is 0000000000100000
-(1 «5) is 1111111111011111
1«2 is 0000000000000100
1«14 is 0100000000000000

(6) If If
There will be no change, if the statement is written as x = x«2; , then the value of x will change.

(7) 0000001110001111
Prints the binary pattern of an integer, we have taken the masks in an array.

(8) 1

Extracts the bit at position pos
Bit pattern of num is 10100000 0001 1101
Bit pattern of lis 0000 0000 0000 0001
Bit pattern of mask = 1«3 is 0000 0000 0000 1000
Bit pattern of num & mask is 0000 0000 0000 1000
Bit pattern of (num&mask»>3 0000 0000 0000 0001
In this way we can extract a bit at position pos.

(9) 0010001110001110
Prints the binary pattern of an integer, the logic of extracting a bit is same as used in previous
question..

(10) 1

Extracts the bit at position pos
Bit pattern of num 0000 0000 0001 1111
Bit pattern of num»3 0000 0000 0000 0011
(Now the bit that was at position 3 has come to the ~ightmost position)
Bit pattern of 1 0000 0000 0000 0001
Bit pattern of (num»3)&10000 0000 0000 0001 /

(11) 1010 000011011111 i

Prints the binary pattern of an integer, the logic of extracting a bit is same as used in previous
question.

432 C in Depi

(12) 0001101000111011
Prints the binary pattern of an integer
Initially the mask is 1«15 1000 0000 0000 0000
mask = mask»l 0100 0000 0000 0000
mask = mask» 1 0010 0000 0000 0000
So we can see that in each iteration the mask changes, and hence we can extract all the bil

~ ..

Chapter 14

Miscellaneous. Features In C

Enumeration
::s speak more than numbers and this is the reason for the inclusion of enumerated data types in

etimes the replacement of integer constants like I, 2 3 by some meaningful and descriptive names,
ces the readability of the code and makes it self documenting. For example suppose we are making

'" related program, then it would be better if we could use names like Jan, Feb, Mar, Apr instead
e numbers 1, 2, 3, 4.

umeration type is a' user defined data type, which can take values only from a user defined list
ed integer constants called enumerators. The syntax of defining an enumeration data type is same

t of structure or union. The general format of definition is- .
enum tag{

memberl;
member2;

} ;

enum is a keyword, tag is an identifier that specifies the name of the new enumeration' type being
- ed, and memberl, member2 are identifiers which represent integer constants and are called

rator constants or enumerators. The list of these enumerators is called enumerator list. Note that
structure and union, here the members inside the braces are not variables, they are named integer

I..-~.nts.

the definition, we can declare variables 'of this new data type as-

enum tag varl, var2, var3;

arl, var2, var3 are variables of type enum tag. These variables- can take values only from the
rator list.

Tariables can also be declared with the definition as
enum tag {

memberl;
member2 ;

}varl, var2, var3;

me tag is optional. Let us take an example

;mum month{ Jan, Feb, Mar, Apr, May, lun };

434

Here anew data type month is defined and the enumerator list contains six enumerators.

Internally the compiler treats these enumerators as integer constants. These are automatically assi~

integer vaJues beginning from 0, 1,2... etc till the last member of the enumeration. In the above exa
these enumerators will take following values-

Jan °
.Feb 1

Mar 2

Apr 3

May 4

Jun 5

These are the default values assigned to the· enumerators. It is also possible to explicitly assign
value to enumerators but in this case, the successive unassigned enumerators will take values one gr
than the value of the previous enumerator. For example-

enum month{ Jan, Feb = 4, Mar, Apr, May = 11, Jun };

Now the enumerators will take following values-

. Jan °
Feb 4
Mar 5

Apr 6
May 11

Jun 12

We can assign any signed integer value to enumerators, provided the value is within the range 0=

It is also possible to assign same value to more than one enumerator.

enum month{ Jan, January = 0, Feb = 1, February = 1, Mar = 2, March = 2}; "

The enumerated variables can be processed like other integer variables. We can assign values to
from the enumerator list or they can be compared to other variables and values of the same type.
example-

enum month{ Jan, Feb, Mar, Apr, May, Jun }ml, m2;

ml= Mar;

m2 = May;

Nowml has integer valu~ 2 and m2 will take the value 4.

Any variable of type enum month can take values only from the 6 enumerators specified in th"
For example this is invalid-

ml = Dec; /*Invalid*/

Some other examples of enum data type definitions are

enutn suit { Spades, Hearts, Clubs, Diamonds};

enum position { Ace = I, King, Queen, Jack, Ten, Nine, Eight, Seven, Six, Five, Three, -=
enum month{ Jan, Feb, Mar, Apr" May, Jun, Jul, Aug, Sep, Oct, Nov, Dec};

enum day{ Sunday, Monday, Tuesday, Wednesd~y, Thursday, Friday, Saturday};
enum color{ white, black, red, green, blue, yellow, pink, brown};

laneous Features in C

enum boolean { true , false};
enum switch{ off, on};
enum subject{ Hindi, English, Maths, Physics, Chemistry, Biology, History };
enum base { Binary = 2, Octal = 8, Decimal = lO, Hexadecimal = 16};

are some examples of code using these enum definitions
enum color walls, floor;
if (walls==pin~)

floor=blue;
else

floor=white;

enum day today;
today=Monday;
if (today==Sunday)

printf("Holiday\n");
else if (today==Saturday)

printf ("Half working' day\n");
else

printf ("Full working Day\n");

enum subj ect s;
irit passmarks;'
switch(s)
{

case hindi:
case english:

passmarks=25;
break;

case maths:
passma'rks=40;
break;

case physics:
case chemisty:

passmarks=35.;
break;

default:
passmarks=33;

435

Suppose we need a function that returns number of days in a month. It can be written as- _
enum month m;
in):: days;

if (m==Apr I I m==Jun I I m==Sep I I m==Nov
days=30;

if (m==Jan Ilm==Mar II m==May II m==Jul II m==Aug II m==Oct I I m==Dec)
days=31;

if(m==Feb
d,ays=28

436 C in De

/ * P14.l Program to print the value of enum variables* /
#include<std~o.h>

mainC)
{

enum month{Jan,Feb,Mar,Apr,May,Jun}ml,m2i
ml=Mar;
printf("ml = %d \n",ml);
printf ("Enter value for. m2 ") ;
scanf ("%d" ,&m2) ;
printf('~m2 %d \n",m2);

}

·Output :

ml = 2
Enter the value for m2 : 5

m2 = 5

It is not possible to perform .input and output in terms of enumerator names. The input and outp
only in the form of their integer values. You may be tempted to use %s to output and input enum
variables but this is invalid since enumerators are not strings.

printf("%s", ml); /*Invalid*/

Since enumerators are identifiers so their·name should be different from other identifiers in the
scope. The following code is wrong because the identifier chemistry has been used at two diffi
places.

enum group I { physics, chemistry, maths};
. enum group2{ zoology, botany, chemistry}; /*Invalid*/

float maths; /* Invalid*/

We can use typedef in the definition of enum, for example:
typedef enum{false, true} boolean;

Now we can define variables like this-
boolean flag = true;

We have seen earlier that we can define constants using #define also, for exampk
#define Sun 0
#define Mon 1
#define Tue 2
#define Wed 3

Now we'll compare the constants defined by #define preprocessor directive and enum.
(i) By defining an enum, we define a new type whose variables can be declared but using

. we can only give name to some constant values.
(ii) enurn is a part of C language(32 keywords) but #define is not.
(iii) All #define directives are global, while enum obeys the scope rules.
(iv) In #define we have to explicitly assign the values to all constants, while in enum the val

assigned by the compiler automatically.

We can always write our programs by using integer variables instead of enumerated variables,
of enum in complicated programs. makes the program more understandable.

iscellaneous Features in C 437

14.2 Storage. Classes
addition to data type, each variable has 'one more attribute known as storage class. The proper use

of storage classes makes our program efficient and fast. In larger multifile programs the know:ledge
of storage classes is indispensable. We can specify a storage class wh·le declaring a variab.le. The gcit~ral

. \
~tax 1S- .

storage_class datatype variable_name;

There are four types of storage classes
Automatic
External
Static

-,. Register

The keywords auto, static, register, extern are used for these storage classes. So we may write
eclaration statements like this

auto int x, y;
static float d;
register int z;

en the storage class specifier is not. present in the declaration, compiler assumes a default storage
lass based on the place of declaration.

storage class decides about these four aspects of a variable-'
) Lifetime - Time between the creation and destruction of a variable.
) Scope - Locations where the variable is available for use.
) Initial value - Default value taken by an uninitialized variable.
) Place of storage - Place in memory where the storage is allocated for the variable.

_~ow we'll discuss all these storage classes one by one in detail.

4.2.1 Automatic

the variables declared inside a. block/function without arty storage class specifier are called automatic
·ables. We may also use the keyword auto to declare automati'c variables, although this is generally

t done. The following two declaration statements are equivalent and both declare a and b to be automatic
'abies of type into

=:mc ()

int a,b;

- nc (

\
auto int a,b;

e uninitialized automatic variables initially contain garbage value. The scope of these variables is inside
function or block in which they are declared and they can't be used in an~ other function/block.

438 C in- Depth

They are named automatic since storage for them is reserved automatically each time when the control
enters the function/block and are released automatically when the function/block terminates. For example-

/ *P14. 2 Program to understand automatic variables * /
#include<stdio.h>
main()
{

func () ;
func () ;
func () ;

}

func ()
{

int, x=2,y=5;
printf("x=%d,y=%d",x,y) ;
x++; y++;

}

Output:

x = 2, y = 5
x = 2, Y = 5

x = 2, y = 5

Here when the function func() is called first time, the variables x and yare created and initialized
and when the control returns to main(), these variables are destroyed. When the function func() is
c.alled for the second time, again these variables are created and initialized, and are destroyed after
execution of the function. So automatic variables come into existence each time the function is executed
and are' destroyed when the function terminates.

Since automatic variables are known inside a function or block only, so we can have variables of same
name in different functions or blocks without any conflict. For example in the following program the
variable x is used in different blocks (here blocks consist of function body) without any conflict.

/ *P14. 3 Program to understand automatic variables* /
#include<stdio.h>
main ()
{

int x=5;
printf ("x
tunc () ;

}

tunc ()
{

int x=15;
printf ("x

%d\t" ,x);

%d\n",x);
}

Output:

x = 5 x = 15

Here the variable x declared inside main() IS different from the variable x declared inside the functiOl
func().

439cellaneous Features in C

the next program, there are different blocks inside maine), and the variable x declared in different
ks is different.

P14.4 Program to understand automatic variables * I
:~clude<stdio.h>

:in ()

int x=3;
printf("%d\t",x) ;
{

int. x=10;
printf("%d\t",x);

int x=26;
printf("%d\t" ,x);

}

printf("%d\n",x);

310 26

External

tput:

3

e variables that have to be used by many functions and different files can be declared as external
.abIes. The initial value of an uninitialized external variable is zero.

fore studying external variables, let us first understand the difference between their definition and
- laration. The declaration of an external variable declares the type and name of the variable, while

definition reserves storage for the variable as well as behaves as a declaration. The keyword extern
- specified in declaration but not in definition. For example the definition of an external variable salary
. 1 be written as- "

float salary;

declaration will be written as-·

extern float salary;

e following points will clarify the concept of definition and declaration of an external variable.

finition of an external variable-
) Definition creates the variable, so memory is allocated at the time of definition.
) There can be only one definition.
) The variable can be initialized with the definition and initializer should be con$tant.
) The keyword extern is not specified in the definition. Some compilers may allow the use of extern

but it is better to omit this. keyword in the definition.
) The definition can be written only outside functions.

:Jeclaration of an external variable-
) The declaration does not create the variable, it only refers to a variable that has already been created

somewhere, so memory is not allocated at the time of declaration.

440 C in Depth

. (b) There can be many declarations.
(c) The variable cannot be initialized at the time of declaration.
(d) The keyword extern is always specified in the declaration.
(e) The declaration can be placed inside functions also.

Consider this program:
#include<stdio.h>
int x=8;
main ()
{

}

funcl ()
{

}

func2 ()
{

In this program the variable x will be available to all the functions, since an external variable is actiy
from the point of its definition till the end of a program. Now if we change the place of defmition 0

variable x like this-
#include<stdio.h>
main()
{

)

funcl()
{

int x=8;
func2 ()
{

Now x is defined after maine) and funcl(), so it can't be used by these functions, it is available 0 •

to function func2(). Suppose we want to use this variable in function maine) then we can place
declaration in this function like this-
#include<stdio.h>
main()

ext:ern int x;

)

funcl()
{

Miscellane.ous Features in C

int X=8i

func2(
{

441

Now x will be available to functions func2() and maine).

Till now we had written our program in a single file. When the progra~ is large it is written in different
files and these files are compiled separately and linked together afterwards to form an executable program.
Now we'll consider a multifile program which is written in three files viz. first.c, second.c and third.c.

fust.e seeond.e third.e

int x = 8; func2() func4()
maine) { {
{

} }
} func3() func5()
funcl() { {
{

............. } }
}

Here in the file first.c, an external variable x is defined and initialized. This variable can be used both
in maine) and funcl () but it is not accessible to other files. Suppose file second.c wants to access
this variable then we can put the declaration in this file as-

fust.e seeond.e . third.c ..
int x = 8; extern int x; func4()
maine) . func2() {
{ {

............. }
} } func5()
funclO func3() {
{ {

.............. }
} }

'ow this variable can be accessed and modified in files first.c and second.c and any changes made
to it will be visible in both files. If this variable is needed by only one function in the file second.c,
then the extern declaration can be put inside that function.

So the declaration of an external variable using extern keyword is used to extend the scope of that
variable.

442 C in Depth

./

Suppose our program consists of many files and in file first.c, we have defined many variables that
may be heeded by other files also. We can put an extern declaration for each variable in every file that
needs it. Another better and practical approach is to collect all extern declarations in a header file and
include that header file in the files, which require access to those variables.

14.2.3 Static

There are two types. of static variables
. (l) Local static variables

(2) Global static variables

14.2.3.1 Local Static Variables

The scope of a local static variable is same as that of an automatic variable i.e. it can be used only
inside the function or block in which it is defined. The lifetime of a static variable is more than that

.of an automatic variable. A static variable is created at the compilation time and it remains alive till the
.end of a program. It is not created and destroyed each time the control enters a functionlblock. Hence
a static variable is created only once and its value is retained between function calls. If it has been
initialized, then the initialization value is placed in it only once at the time of creation. It is not initialized
each time the function is called.

A static variable can be initialized only by constants or constant expressions. Unlike automatic variables,
we can't use the values of previously initialized variables to initialize static variables. If a static variable
is not explicitly initialized then by default it takes initial value zero.

int x = 8;

int y = x; /*Valid*/

static int z = x; /*Invalid, initializer should be constant*/

Let us take a program to understand the use of local static variables. This program is similar to P14.2
but here x and yare declared as static variables.

/ *P14. 5 Program to understand the use of local static variable&* /
#include<stdio.h>
main()
{

func () ;
func () ;
func () ;

}

func ()
{

static int x=2, y=5;
printf("x=%d,y=%d\n",x,y) ;
x++; y++;

}

Output:

x· = 2, Y = 5
x = 3, y = 6

x = 4, Y = 7

Note that the effect of initialization is seen only in the first call. In subsequent calls initialization is no

Miscellaneous Features in C 443

performed and variables x and y contain values left by the previous function call. The next program
also illustrates the use of local static variables. . .

/ *P14. 6 . Program to understand the use of local sta·tic variable * /
#include<stdio.h>
main()
{

int n,i;
printf {"Enter a number :");
scanf ("%d" ,&n) ;
for(i=l;i<=lO;i++)

func(n);
printf("\n") ;

}

func (int n)
{

static int step; /* Automatically initialized to 0 * /
step=step+n;
printf("%d\t",step);

}

Output:

Enter the number : 4

4 8 12 16 20 24 28 32 36 40

The next program uses a recursive function to find out the sum of digits of a number. The variable
sum taken inside function sumd() should be taken as static.

I
/*P14.7 Program to find out the sum of digits of a number
#include<stdio.h>
int . sumd (int num);
main()
{

int num;
printf ("Enter a number ") ;
scanf("%d",&num) ;
printf ("Sum of digits of %d is %d\n", num, sumd (num)) ;

int sumd (int num)

static int sum=O;
if (num>O)
{

sum=sum+{num%lO) ;
sumd(num/lO) ;

return sum;

recursively*/

)

14.2.3.2 Global Static Variables

If a local variable is declared as static then it remains alive throughout the program. In the case of

~----------
444 C in Depth

global variables~ the static specifier is not used to extend the lifetime since global variables have already
a lifetime equal to the life of program. Here the static specifier is used for information hiding. If an
external variable is defined as static, then it can't be used by other files of the program. So w'e can.
make an external variable private to a file by making it static.

first.c second.c third.c

int x = 8; extern int x; func4()
static irit y =10; func2() {
maine) {
{ }

}" func5()
} func3() {
funclO {
{ }

............. }
}

Here the variable y is defined as a static external variable, so it can be used only in the file first.c. We
can't use it in other files by putting extern declaration for it.

14.2.4 Register

Register storage class can be applied only to local variables. The scope, lifetime and initial value of register
variables are same as that of automatic variables. The only difference between the two is in the place
where they are stored. Automatic variables are stored in memory while register variables are stored in
CPU registers. Registers are small storage units present in the processor. The variables stored in registers
can be accessed much faster than the variables stored in memory. So the variables that are frequentl
used can be assigned'register storage class for faster processing. For example the variables used as
loop counters may be declared· as register variables since they are frequently used.

/ *P14. 8 Program to understand the use of register variable*!
#include<stdio.h>
main(
{,

register· int i;
for(i=O;i<20000;i++)

printf("%d\n".i);

Register variables don't have memory addresses so we can't apply address operator(&) to them. Then
are limited number of registers in the processor hence we can declare only few variables as registeJ
If many variables are declared as register and the CPU registers are not available then compiler wi!
treat them as automatic variables.· \

The CPU registers are generally of 16 bits, so we can specify register storage class only for int, cha
or pointer types. If a variable other than these types is declared as register variable then compiler treat
it as an automatic variable.

The register storage class specifier can be applied to formal arguments of a function while the otht
three storage class specifiers can't be used in this way.

iscellaneous Features in C

4.3 Storage Classes in Functions

445

-:be storage class specifiers extern and static can be used with function definitions. The definition
f a function without any storage specifier is equivalent to its definition with the keyword extern i.e.

default the definition of a function is considered external. If a function is external then it can be
ed by all the files of the program and if it is static then it can be used only in the file where it is

- fined.

~ an external function is to be used in another file, then that file should contain function declaration
d it is a good practice to specify extern in that declaration.

first.c

main()
{

}
float func1(int)
{

}

second.c

extern float func 1(int);
func2()
{

}
static int func3(int)
{

}

third.c

void func4()
{

}
void func5()
{

}

-ere the function func 1() is defined in file first.c. Its declaration is put in file second.c, so it can be
ed in this file also. The function func3() in file second.c is defined as static so it can't be used
. any other. file. Generally declarations of all functions are collected in a header file and that header
e is included in other ·files.

4.4 Lirikage
_ ere are three types of linkages in C

_) External linkage
) Internal linkage
) No linkage

c.al variables have no linkage, so their scope is only within the block where they are declared. Global
'ables ·and functions have external iinkage, so they can be used in any file of the program. Static

_obal variables and static functions have internal linkage, so their scope is only in the file where they
declared.

4.5 Memory During Program Execution
- e register variables are stored in CPU registers and rest of the variables are stored in memory. Now

us see how memory is organized when a C program is run.

de Area: This area is used to store executable code of the program. The size of this area does not
ge during run time.

ta Area: This area stores static and global variables. His further subdivided into two areas viz. initialized
area and uninitialized data area. The initialized data area stores all the initialized static and global

446
-

C in Dep

variables while the uninitialized data area stores all the uninitialized static and global variables. The reasa.:
for division of this area is that all unintialized variables can be collectively assigned value zero. The sil::
of data area is also fixed and does not change during run time.

.-------------, .

Code Code of the program
1------------1 .

Initialized Data Initialized static variables
Initialized global variables

I-----------i .

Uninitialized Data Uninitialized static variables
Uninitialized global variables

Dynamically allocated memory

Initialized and uninitialized
, automatic variables

1------------1 .

Heap
II------+------i ...
•1------4-"'"-----j .

Stack

'---------~--' ..

Memory during execution of the program

Heap: This area is used for dynamically allocated memory. It is the responsibility of the program::
to allocate memory from the heap. The size of this area is dynamic i.e. it may change during run t!;

Stack: Automatic variables are stored in this area. The size of this area keeps on changing during
time.

The following table summarizes all the features of storage classes- ""

l,(eyword Place of Lifetime Scope Initial Place of Linkage InitiaIt
, declaration I Value storage

auto Inside Function Function Garbage Memory None Consta;
(or none) Function /Block /Block (stack) VariabI;:

/Block -

register Inside Function Function Garbage Registers None Consta:
Function /Block /Block Variab~

/Block

static Inside Program Function Zero Memory None ConSl
(local) Function / Block (data are:;!)

/Block

(none) Outside Program Definition to Zero Memory External COllSl
function end offile (data area)
(Definition of (can be shared
external in other files

I

Miscellaneous Features in C 447

variable) using extern
declaration)

extern Outside' or Program Declaration to - Memory External Can't be
inside fimction cnd of file (data area) initialized
(Declaration / Function
of external
variable)

static Outside Program Definition to Zero Memory Internal Constant
(global) function end of file (data area)

(can't be "
shared in
other files
using extern
declaration)

14.6 const
If any variable is declared with const qualifier, thenthe value of that variable can't be changed by the
program. The const qualifier can occur in the declaration before or after the data type. For example-

const int x = 9;

int const x = 9;

Both these declarations are equivalent and declare x as a const variable. Any attempt to change the value
of this variable in the program will result in an error. For example these statements are invalid-

x = 10; /*Invalid*/
x = func(); /*Invalid*/
x++; /*Invalid*/

"The canst qualifier informs the compiler that the variable can be stored in read only memory. A const
variable can be given a value only through initialization or by som~ hardware devices. Note that the
value of a const variable can't be modified by the program, but any external event outside the program
an change its value.

If an array, structure or union is declared as const then each member in it becomes constant. For
example-

const int arr[5] = { 10, 11, 12, 13, 14 };---const struct { char x; int y; float z; }var ={ 'A', 12, 29.5 };
arr[2] = 22; /*Invalid*/
var.x = 'B'; /*Invalid*/

-=-tle const variables are not true compile time constants inC. So we can't use const variables where
~onstant expressions are required e.g. in array dimensions or case labels.

-or example the following code is invalid in C.

const int size=10;

int arr[size];

l ~ ~_~_~

448 C in Depth

The const qualifier can be useful while passing array arguments to functions. We know that when an
array is pissed as an argument, the function gets access to the original array and can modify it. If
we don't want the function to make any changes in the array then we can declare the array as con
in the formal parameter list..
func (canst char· arr []
{

}

Now we'll see how to use canst in pointer declarations. We can declare three types of pointers using
the qualifier const:
(i) Pointer to canst data
(ii) cQnst pointer
(iii) const pointer to canst data

Consider these declarations-

const int a = 2, b = 6;

canst int *p I = &a; /* or int canst *p I = &a; */

Here pI is declared as a pointer to constinteger. We can change the pointer pI but we can't chan
the variable pointed to by pl.

*p 1 = 9; /*Invalid*/

pI = &b; /*Valid since pI is not a constant itself*/

Now consider these declarations-

int a = 2, b = 6;

int' *const p2 = &a;

Here p2 is declared as a canst pointer. We can't change the pointer variable p2, but we can chane _

. the variable po(nted to byp2.· <,

*p2 = 9; /*Vali"d*/

p2 = &b; /*Invalid since p2 is a constant*/

Now consider these declarations-

const int a=2, b=6;

const int const *p3=&a;

Here p3 is declared as a const pointer to const integer. We can neither change the pointer variable ':
nor the variable pointed to by it.

*p3 = 9; /*Invalid*/

p3 = &b; /*Invalid*/

So the three different types of declarations of pointers using const are-
int const *ptr; or canst int *ptr; /* pointer to const integer */
int *const ptr; /* const pointer to an integer */
const int *const ptr; /* const pointer to a const integer */

The following example will further clarify this concept.
char strl [] "weal thy" ;

Miscellaneous Features in C

char str2[]="strong";
const char *pc=strl;
char *const cp=strl;
const char*const cpc=strl;

/ *pointer to const * /
/ *const pointer* /
/ *const p'ointerto const * /

449

pc=str2;
cp=str2
cpc=str2;

*pc='h';
*cp='h';
*cpc='h';

/*Valid*/
/*Invalid*/
/*Invalid*/

/*Invalid*/
/*Valid*/
I*Invalid*/

If we want to assigp the address of a canst variable to a non const pointer~len we'll have to use
ast operator. For example

const int a = 10;

int *ptr;

ptr = (int *)&a;

_ ow if we try to change the value of variable a indirectly through ptr then the result is undefined and
ere can be a run time error.

ptr = 12; / undefined*/

14.7 volatile

l

Ihenever a variable is encountered in the program, compiler reads the value of that variable from the
memory. But sometimes for optimization purposes the compiler stores the value of the currently used
"ariable in any unused register. Now when that variable is encountered next time in the program and

me compiler sees that the program has not changed value of the variable, it reads the value from the
register instead of the memory. This process saves time since accessing a register is faster than accessing
memory.

"This sort of automatic optimization by the compiler may sometimes lead to incorrect results. This generally
happens when the value of a variable can be modified by some external process outside the program.
These types of situations arise when we have memory mapped I/O, variables shared among multiple

rocesses or variables that can be modified by interrupt routines.

For example suppose we have a variable time that "represents current system time and its value is controlled
. y the system clock. Now consider this loop-

while(time != T)

/* Do nothing till value of variable time equals T*/

The optimizing phase of the compiler may observe that the value of variable time is not changing inside
me loop, so it may decide to access its value once from the memory and then cache this value in a
egister. Now for each iteration of the loop, compiler reads this cached value from the register and.

hence the loop will never terminate, but this is not what we wanted. It is our responsibility to inform
the compiler that the value of a particular variable may change through some external process also.

To solve these types of problems we can use volatile qualifier. If a variable is declared with the qualifier
volatile, then we are instructing the compiler to turn off the optimization process for that variable i.e.
we are forcing the compiler to read the value of that variable from memory only, each time it is

450 C in Depth

encountered in the program. The optimization phase of compiler will never try to cache the value: 0

a volatile variable in a register.

The value of a volatile variable can be changed from inside the program. If we don't want this to happen
we can use the qualifier const along with the qualifier volatile. For example-

const volatile int x;

If an array, structure or union is declared as volatile then each member becomes volatile.

14.8 Functions With Variable Number Of Arguments
In the functions that we had created till now, the number and data type of arguments was fixed
the time of function definition. In some situations we may need functions that can accept variable numb
of arguments of different types. The library functions printf() and scanf() are example of these t
of functions. We have already used these functions many times with different number and type
arguments. We can also creat~ our own functions that can accept variable number of arguments. Th
types of functions are also known as variadic functions.

The header file stdarg.h provides the facilities needed to define functions with variable number
arguments. This file defines a new type called va_list and three macros va_start, va_arg, va_end
can operate on variables of this new type.

Type

va_list - Used to declare argument pointer variables.

Macros
Initializes the argument pointer variable.
Retrieves the current argument and increments the argument pointer.
Assigns NULL to argument pointer.

(.

A function that accepts variable number of arguments should be defined with ellipsis(...) at the
of argument list. The ellipsis should occur only at the end of argument list and there should be at 1
one fixed argument. For example-
func (char *str, in!: num, ...)
{

Here func() takes two fixed arguments viz. str, num and after that it can accept any numbe
arguments. For example all these calls of func() are valid-

func("Chennai", 40, 67.89, 'p', "Madras", 23, 67);
func("Lucknow", 35, 66);
func("Bareilly", 30, 'x', 20, 39, 12.5);

In all these calls first two arguments are always a string and an integer, rest of the arguments Cl

of any type. Now inside the function definition we can ~ccess the fixed arguments using their
but the remaining arguments don't have a name so they are accessediusing the macros defined in stc
file. This is why fixed arguments are known as named arguments and variable number of argu
are known as unnamed arguments. Now we'll see how we q.n access these unnamed arguments
the function body.

_fiscellaneous Features in C 451

Initially we'll declare a variable of type va_list.

. va_list ap;

This variable is conventionally named ap. Here ap is known as argument pointer and will. be used to
point to the unnamed arguments. The macro va_start initializes ap and makes it point to the first unnamed

gument passed to the function. This macro takes two arguments, first one is the argument pointer
ap and second one is the name of the last fixed argument passed to the function (i.e. argument which
is just before the ellipsis). For example in the above function func(), va_start will be called as-

va_start(ap, num);

_ ow we can access individual variable arguments sequentially by using va_argo This macro takes ap
Ed the data type of the current argument.

arg = va_arg(ap, datatype);

It returns the value of the current argument and increments the pointer ap so that it points to the next
argument. After calling va_start, the first call of va_arg returns first unnamed argument, second call
returns second unnamed argument and so on. If datatype of the cunent unnamed argument in the function
all does not match with the datatype in va_arg then the behaviour is undefined.

The macro va_end should be called before exiting from the function. This macro sets the argument
pointer to NULL.

va_end(ap);

The unnamed arguments can't be used after calling va_end. If we want to use those arguments then
once again we'll have to initialize ap with va_start.

The whole procedure is summarized in these steps-

(i) Include the header file stdarg.h

(ii) .The fU1!ction header should contain ellipsis to denote the variable argument list.

(iii) Declare a variable of type va_list.
(iv) Initialize this argument pointer using va_start, so that it points 'to the first unnamed argum~nt.

(v) Use va_arg to retrieve the value of arguments.

vi) Call the macro va_end when you have finished working with these arguments,

There is no facility to count how many arguments were passed in the function call and what was the
lype of each argument. It is programmer's responsibility to pass this information to the function through
fixed arguments. For example we may decide to take the first fixed argument as an integer that represents
the total number of unnamed arguments. Generally a fonnat string is passed as a fixed argument, which
ontains infonnation about the type ofeach argument. For example printf() uses the format string that
ontains conversion specifications which denote the data type of each unnamed argument.·

. ow we'll take an example program and apply all these concepts. In this program we will make a function
um() which returns the sum of integers passed to it.

/*P14.9 program to find out the sum of integers * /
-include<stdio.h>
=include<stdarg.h>
':'nt sum(int ; ..);
ain()

{

printf ("Total %d\n", sum(2, 99, 68));

452

printf ("Tot,~l
printf ("Total

%d\n",sum(3,11,79,32)) ;
%d\n",sum(5,23,34,45,56,78)) ;

. C in.Depth

}

int sum (int num, ...)
{.

int i;
va...:.list . ap;
int arg, total=O;
va_start (ap,num) ;
for(i=O;i<num;i++)

arg=va_arg(ap,int) ;
printf("%d ",arg);
total+=arg;

}

va_end (ap) ;
return. total;

}

Output:
99 68 Total = 167
11 79 32 Total = 122
23 34 45 5678 Total = 236

Here we have called the function sum with different number of arguments. We have taken only 0

fixed argument num that represents the number of unnamed arguments passed to the function. It
used in the loop to step through the unnamed arguments. Inside the function, firstly a variable of va_
type 'is declared. Then va_start is called and num is passed to it since it is the last fixed argume
After-that each variable argument is obtained by calling va_arg repeatedly inside a loop.

In the above program we have taken variable number of arguments but all of them were of the san
type. Now we'll take another program in which the unnamed arguments are of different types. 11
working of this function is somewhat similar to that of printf() function. In this function we'll s
only one fixed argument and that will be a format string. Inside the function we'll scan this fom
string to know the data type of the unnamed argument. The text in the format string is printed throul
putchar(). We have printed character values and string values using putchar() and fputs() respective
The integer and float values are first converted to strings and then printed using fPuts().We have us
i_to_str() function that converts an integer to a string and Cto_str() function that converts a fl
to a string. The definitions of these functions are given in chapter string (program P9.31). This pri
) function is a bit smarter than printf(), since it can print the binary equivalent of an integer ali

/*P14.10 Program that uses a function similar to printf()*/
#include<s~darg.h>

#include<stdio.h>
void i_to_str (int num, char' str [] ,int b);
void f_to_str (float num, char str []) ;
void print(char *format,);
main()

int a=125;
float b= 563.66;

iscellaneous Features in C

char c=' Q' ;

char *name="Ranju";
print ("Value of a in binary - %b\n",a) ;

print ("Value of a in octal %o\n", a) ;

print ("Value of a in decimal = %d\n", a) ;

print ("Value of a in hexadecimal %x\n", a) ;

print ("Value of P = %f\n" ,b) ;
print ("Value of c %c\n",c);

print ("Value of name %s'\n", name) ;
}

void print (char * format, ...)
(

char *p,*str;
int k;
float 1;
va_list ap;
va_start(ap,format);

for(p=format;*p!='\O' ;p++)
(\

if((*p)=='%')
(

p++;
swi tch (*p)

<"
case 'b':

k=va_arg(ap,int) ;
i_to_str(k,str,2) ;
fputs(str,stdout) ;
break;

case 'd':
k=va_arg(ap,int) ;
i_to_str(k,str,lO) ;
fputs(str,stdout) ;
break;

case '0':

k=va_arg(ap,int) ;
i_to_str(k,str,8) ;
fputs(str,stdout) ;
break;

case 'x':
k=va_arg~ap,int);
i_to_str(k,str, 6);
fputs(str,stdout)
break;

case 'c':
k=va_arg(ap,int) ;
putchar(k) ;
break;

case's' :
str=va_arg (ap, char *);

453

;;p

454 C in Depth

fputs(str,stdout) ;
break;

case "f':
l=va_arg(ap,double) ;
f_to_str(l,str);
fputs(str,stdout) ;
break;

case %':
putchar('%');
break;

}

else
putchar(*p) ;

Here we have used int in va:",arg to extra-::t a char value and double to extract a float value. This
because in the case of variable number of arguments the default argument promotions are applied i.
arguments of type char and short int are promoted to int and arguments of type float are convert
to double. So use int for extracting a char, short int or int and use double, to extract a float or doub

We have taken the function print to be of void type, if you want you can return the number of charact
output as in printf().

The functions i_to_str() and Cto_str() can't handle negative numbers, so before calling these functio
we'll have to write an additional condition for negative numbers like this-

k = -k; putchar(' - '); }

Passing Variable Number of Argume"nts To Another Function

if (k<O)

{

14.8.1
Suppose we write a function funcl() thattakes variable number of arguments and we want to p
all these unnamed arguments to another function func2(). For this the function func2() should
declared such that it can accept a variable of va_list type.
funcl (int num, ...)
{

va_list ap;
va_start (ap,num) ;
func2 (num, ap) ;

}

func2 (int num,va_list ap)
{

So here inside func2() there is no need to declare a variable of va_list type and call to macro va_
is also not needed. The variable ap can be used in the macro va_arg to retrieve the arguments.
in func2() we can use the unnamed arguments only once, it is not possible to call va_start again

~iscellaneous Features in C ·455

retraverse the variable argument list. Now we'll take a simple example and see how this .can be done.
In the program P14.9 we had made a function sum() that displays the integers and returns their total.
_ ow we'll make a separate function display() for displaying the numbers and will send the initialized
argument pointer to this function.

/*P14.11 Program in which the variable length list is passed to another

function*/
-inc1ude<stdio.h>
=inc1ude<stdarg.h>
. n t sum (in t . . .) ;
oid display (int, va_list) ;

:nain ()
{

printf ("Total=
printf("Total
printf ("Total=

%d\n",sum(2,99,68»;
=%d\n",sum(3,11,79,32» ;
%d\n",sum(5,23,34,45,56:'78» ;

l

}

':'nt sum (int num, .. ,)

int i;
va_list ap;
int arg, total=O;
va~start(ap,num);
display(num,ap) ;
for(i=O;i<num;i++)

arg=va_arg(ap,int);
tota1+=arg;

}

va_end (ap) ;
return total;'

}

void display (int num, va_list ap)
{

int i,arg;
for(i=O;i<num;i++)

arg=va_arg(ap,int) ;
printf("%d ",arg);

The library function vprintf is one such function that accepts a variable of type va_list. It is just like
printffunction except that it takes a variable of va_list type instead ofvariable argument list. The prototypes
of printf and vprintf are-

int printf (const char *format [, argument, ...]);

int vprintf (const cl1ar *format, va_list arglist);

imilarly vfprintf and vsprintf are analogous to fprintf and sprintf, except for this single difference.

int fprintf (FILE *stream, const char *format [, argument, ... J);

456

int vfprjntf(FILE *stream, const char *format, va_list arglist);
int sprintf (char *buffer, const char *format [, argument, ...]);
int vsprintf(char *buffer, const char *format, va_list arglist);

C in Depth

Now we'll write a debugging function error() that will display the error message along with file name
function name and line number where the error occurred. This function won't be much useful if it
takes only a fixed number of arguments of specific types because at different times the error message
~ould have to display values of different variables. So we'll define it as a variadic function. The first
four arguments are fixed in which the first three represent filename, function name and line number
respectively. The fourth argument is a format string which represents the error message and is similar
to the fomlat string of printf() function. After this we can have variable number of arguments which
will be written along with the error message, according to the conversion specifications(%d, %s etc}
present in the format string. The definition of error() function can be written as-

error(char *file,char *fname,int line,char *format, ...)

va_list ap;
va_start(~p,format);
printf("ERROR ");
printf("File %s
printf ("Function - %s
printf("Line %d\n",
vprintf(format,ap) ;
printf ("\n");

Here we have used vprintf to print the error message along with the variable number of arguments_
Now suppose this function is invoked in function myfunc() of file myfile.c, at line 44 like this
myfunc ()
{

error (__FILE__ , "myfunc" , __LINE__ , "Value of a must be less than
%d and greater than %d\n",lOO,5);

}

The output will be this-

ERROR: File - c:\dir\myfile.c , Function - myfunc , Line - 44

Value of a must be less than 100 and greater than 5

If we want to send the output to the stream stderr, then we can use fprintf and vfprintf instead of
printf and vprintf in the definition of error function. .

14.9 Ivalue and rvalue
Sometimes we get compiler errors that use the terms lvalue and rvalue. An expression that can occur
on t~e left hand side of a~signment operator is known as lvalue and an expression that can occur only
on nght 'hand Side of assignment operator is known as rvalue.

Some examples of rvalues are-
5

J1iscellaneous Features in C 457

x+y*z

monday

&x

arr

(here monday is an enum constant)

(here x is an integer variable)

(here arr is the name of an array)

The value of these expressions can be used in the program, but they can't be modified, we can't write
them on the left side of assignment operator. We will get error'lvalue required' if we try to write
statements like this-

5 = x;

x+y*z = 12;

&x = p;

arr= ptr;

orne examples of lvalues are-

var (var is an integer variable)

ptr (ptr is a p·ointer)

*ptr (ptr is a pointer variable)

emp (emp is a structure variable)

emp->salary (here emp is a structure variable and salary is its member)

arr[2] (arr is a l-d array)

All these expressions can occur both on the left side and right side of assignment operator i.e. we can
use their values in the program and their value can be modified, .

14.10 Compilation And Execution of C Programs
There are different phases through which our program passes before being transformed into an executable
form. The following figure shows these phases-

14.10.1 Preprocessor

The source code is the code that we write using any text editor and the source code file is given an
extension '.c'. This source code is firstly passed through the preprocessor: The preprocessor expands
this code and passes it. to the compiler. We have discussed the role of preprocessor in chapter 12.

14.10.2 Compiler

The expanded code is passed to the compiler. The compiler converts this code into the machine's assembly
language code.

14.10.3 Assembler

This assembly language is converted to object code by the system's assembler. The name of object
file is same as that of source file. In DOS the object file has extension '.obj' and in UNIX the extension
is '.0'.

14.10.4 Linker

Generally all programs written in C, use library functions. Library functions are precompiled and their
object code is stored in library files with' .lib'(or '.a') extension. The linker combines this object code
of the library functions with the object code of our program. Our program may also contain references

-------------------'---~-------'j

458

Compiler
I

assembly code..
Assembler I

Other object - ObjeC~ code Libraries

files CLter~

executable code

C in Depth

to functions that are defined in other files. The linker links the object code of these files also to our
program. So the job of the linker is to combine the object code of our program with the object code
of other files and object code of library functions. The output of the linker is an executable file. In
DOS the executable file has same name as that of source code file and has extension '.exe', and in
UNIX the executable file is named as a.out or the name of output with -0 option.

Exercise
Assume stdio.h is included in all programs.
(1) enum month{jan, feb,rnar,apr,may};

main()
{

enum month m;
m=++feb;
printf ("%d\n", m);

(2) enum day{ sun=l, mon, tue, wed} ;
main()
{

enum day d1;
printf("%d\t",mon) ;
d1=mon+2;
printf("%d\n",d1) ;

(3) struct tag{

Miscellaneous Features in C 459

auto int x;
static int y;

} ;

main ()
{

struct tag s;
s.x=4;
s.y=5;

(4) int var=6;
main()
{

int var=18;
printf("%d",var) ;

(5) main (

int i, sum=O;
for(i=O;i>5;i++)
{

int i=lO;
sum=sum+i++;

}

printf (" sum = %d", sum) ;

(6) main~)

int i, sum=O;
for(i=O;i>5;i++)
{

static int i=lO;
sum=sum+i++;

}

printf (" sum = %d", sum) ;

(7) int x=89;
main()
{

funcl (x) ;
printf("%d\t",x) ;
func2 () ;
printf("%d\n",x) ;

}

funcl (int x)
{ x++;
func2 ()
{ x++;

---------460

(8) int x=2;
static int y=5;
main ()
{

C in Depth

int x=3;
func () ;
func () ;
print f (" Inside main ()

}

func ()
{

static int X;

x=x+2;
printf("Inside func()

(9) main(

funcl() ;

func2() ;
}

funcl(
{

extern int x·,
X++;

printf("%d\t",x);
}

int. x=89;
func2 ()
{

x++;
pri~tf("%d\n",x);

(lO)main(
{

const int *ptr=func () ;
*ptr 7;

printf("*Ptr=%d",*Ptr);
}

func ()
{

x=%d,y=%d\n",x,y);

x=%d,y=%d\n",x,y) ;

int *p=malloc(l*sizeof(int»;
return p;

(ll)main(
{

char
char
char

strl [] = "hockey" ;
str2 [.] = "Cricket" ;
const *p=strl;

j,fiscellaneous Features in C

*p=\j' ;
p=str2;

(12)main (
{

461

char
char
char

str1[
str2[
*const

] ="hockey";
] ="Cricket";
p=str1;

*p=' j' ;
p=str2;

(13)main (
{

int a[]={l,2,3,4};
int b[]={5,6,7,8};
int c[]={9,10,1l,12};
func(a,b,c) ;

}

func(int 'a[J,const int b[J,int c[])
{

a=c ;'
a[O]++;

b=c;
b[O]++;

(14) main.(
{

const int i=23;
const int j =thrice (i) ;
printf("j=%d\n",j) ;

}

thrice(int if
{

return 3*i;

(15)main(
{

int i=3;
const int j =i;
const int k=func () ;
int *ptr=&k;
const int m=*ptr;
printf("%d\t%d\t%d\t%d\n", i, j, k, m);

}

func ()
{

return 4;

462

(16)int *func();
main()
{

int i, size;

const int *arr=func (&size) ;
for(i=O;i<size;i++)

printf ("Enter a [%d)
scanf("%d", &arr[i]);

}

for(i=O;i<size;i++)
printf("%d\t", arr[i);

}

int *tunc(int *psize)

int *p;

printf ("Enter size ") ;
scanf ("%d", psize);
p=malloc(*psize*sizeof(int»;
return p;

(17)#include<stdarg.h>
void func(int n, ...);
main ()
{

int count=4;
func(count,2,3,4,5) ;

}

void func (int n, ...)

va_list ap;
int a,i;
for(i=O;i<n;i++)
{

a=va_arg(ap,int);
printf("%d ",a);

(18)#include<stdarg.h>
main ()

int a=2, b=3, c=4, d=5;
func (4,2, 3, 8, 5) ;

J.') •, ,

C in Depth

}

func(int a,
{

, int b)

va_list *ap;
va_start (ap, a);
for(i=O;i<b;i++)

Miscellaneous Features.in C

printf("%dU,va_arg(ap,int)) ;
va end:

(19)rnain(
{

int x=6;
'++X++ ;

printf("%d\nU,x) ;

Answers
(1) Error: lvalue required

(2) 2 4

(3) Error: storage specifiers can't be used inside definition of structure templates

(4) 18

Whenever there is a conflict between a local and global variable of the same name the local variable
gets the priority.

(5) . sum = 0

(6) sum = 0

(7) 89 90

(8) Inside func() : x = 2, y = 5

Inside func() : x = 4, y = 5

Inside maine) : x = 3, y = 5

(9) 90 91

(10) Error: can't modify a const object

(11) Error: can't modify a const object
Here p=str2 is valid, but *p='j' is invalid. "

(12) Error: can't modify a const object

Here p=str2 is invalid,' but *p='j' is valid

(13) Error: can't modify a const object

Both the statements b=c; and b[O]++; are invalid.'

(14) 69
(15) 3 3 4 4

(16) Enter size : 3

Enter a[O] : 5

. Enter a[l] : 6

Enter a[2] : 7
5 6 7 r-

(17) Since ap was not initialized by va_start, so it may be pointing! anywhere in memory and so we'll
get garbage values.

(18) Ellipsis should always be at the end of argument list, and another mistake is that an asterisk in
used while declaring argument pointer

(19) Error: lvalue required

Chapter 15

Building project and creation of library

We have studied about C lap.guage, now we'll come to the real life problems and see how we can solve
them step by step. Here we will use our C program to develop one real life project with whole software
life cycle of project. This will give' you an idea of developing a full project in C. We will develop. this
project in Turbo C as well as in Unix. Also we will see how to develop a library and use the functions
of this library in different programs. .

The project that we are going to make is related with date. Date related operations are of great importance
in many applications. Most of the application projects require date related manipulations. So our aim
is to develop a project in C, which will perform all date related manipulations. Now we will go step
by step in different phases of software development life cycle for developing this project. These phases
are as-
1. Requirement analysis
2. Top level design
3. Detail design
4. COGing

5. Testing

First step is requirement analysis. Here we think about requirement of our project by analyzing different
manipulation of dates. We know very well what are the operations that are needed with date, as well
as different attributes of date. So after analyzing we came up with a document that gives all the
requirement of the project. This is called as SRS(Software Requirement Specification).
1. Given date is valid or invalid.
2. Day of week from' a given date.
3. Comparing two dates.

I
4. Diffrrence of two dates in days.
5. Difference of two dates in years, months and days.
6. Add years to a given date.
7. Subtract years from a given date.
8. . Add months to a given date.
9. Subtract months from a given date.
10. Add days to a given date.
11. Subtract days from a given date.

15.1 Requirement Analysis

_ Iding project and creation of library 465

-.2 Top Level Design
w we will go to the second step that is top-level design. Here we will divide the whole project in
erent modules. So whenever any change is needed, it will affect only one particular module and

- others. Now we will write different modules in different files. All the modules will be implemented
different files as-

Datefmt.c
This file will contain modules to convert a date from string form to integer variables and vice versa.
Valid.c
This file will contain module to check whether a given date is valid or not.
Leap .c
This file will contain module to check whether a given year is leap or not.
Julian.c
This file will contain module for getting julian number and also converting julian number to months
and days from a given date.
Weekday.c
This file will contain module for getting day of week for a given date.
Cmpdate.c
This file will contain module for comparing two dates.
Diffymd.c
This file will contain module to find out difference in years, months and days for two dates.
Diffdays.c

This file will contain module to find out difference in days for two dates.
Addyear.c
This file will contain module for adding years to a given date.
Subyear.c
This file will contain module for subtracting years from a given date.
Addmonth.c
This file will contain module for adding months to i given date.
Submonth.c
This file will contain module for subtracting months from a given date.
Adddays.c
This file will contain module for adding days to a given date.

-. Subdays.c
This file will contain module for subtracting days from a given date.

5.3 Detail Design
w we will go to the next step that is detail design. Here we analyze all modules one by one for detail
ign. We analyze what functions will be required, what would be the input and return value 'of that
ction in each module and come up .with one document for detail design, which contains the information
function prototype for each modlule. Let us see the function required in each module-

te that date will be always in dd/mm/yyyy format.

t

466 C in Dep-

1. Datefmt.c

void splitDate(char *date, int *y, int *m, int *d)

Input: date string in dd/mm/yyyy format

y integer pointer, will get value of year.

m integer pointer, will get value of month.

d integer pointer, will get value of day

Return value - None

void formDate(char *date, int y, int m, int d)

Input : date pointer to character for getting date in string form

y Integer that represents the year of given date

m Integer that represents the month of given date

d Integer that represents the day of given date

Return value - None

2. Valid.c

Return Value:

y

lilt julian(int d, int m, int y)

Input: d

m

Not a leap year

Leap year

Date is not valid

Date is valid

day from given date

month from given date

year from given date

integer value containing julian number.

year

o
1

4. Julian.c

3. Leap.c
int isLeap(int year)

Input:·

Return Value:

int isValid(char *date)

Input: date

Return Value 0

I

void revJulian(int j, int y, int *d, int *m)

Input: J contains julian no. for given year from given date

y year from given date

d integer value, will get day from julian number

m integer value, will get mpnth from julian number

Return Value: None

• "!ding project and creation of library 467

_. Weekday.c
id weekDay(char *date, char *dayWeek)
lit: date Given date in dd/mm/yyyy format

dayWeek pointer to character for getting day of week
etum value: . None

Subyear.c
subYear(char *date, int dyear, char *newDate)

date Given date
dyear Number of years to be subtracted

Cmpdate.c
cmpDate(char *datel, char *date2)
ut: datel First date in dd/mm/yyyy format

date2 Second date in dd/mm/yyyy format

date1 > date2
date1 = = date2
date1 < date2

~l

o
I

_ ddyear.c
\

addYear(char *date, int iyear, char *newDate}
date Given date
iyear Number of years to be added
newDate Character pointer, will get new date after addition

Value: None

Diffdays.c
diffDays(char *date l, char *date2)
t: date I First date in dd/mmfyyyy format

date2 Second date in dd/mm/yyyy foriuat
Value: integer value that contains difference of two dates in days

-d diffYMD(char *date l, char *date2, int *y, int *m, int *d)
ut: date1 First date in dd/mm/yyyy format

date2 Second date in dd/mrn/yyyy format
y integer pointer, will get years
m integer pointer, will get months
d integer pointer, will get days
None

468

Return Value:

newDate
None

Character pointer, will get new date after subtraction

C in Dep

n. Addmon th.c
void addMonth(char *date, int imonth, char *newDate)
Input: date Given date

imonth Number of months to be added
newDate Character pointer, will get new date after addition

Return Value: None

12. Submonth.c
void subMonth (char *date, int dmonth, char *newDate)
Input: date Given date

dmonth Number of months to be subtracted
newDate Character pointer, will get new date after subtraction

Return Value: None

13. Adddays.c
void addDays(char *date, int days, char *newDate)
Input: date Given date

days Number of days to be added
newDate Character pointer, will get new date after addition

Return Value: None

14. Subdays.c
void subDays(char *date, int days, char *newDate)
Input: date Given date

days Number of days to be subtracted
newDate . Character pointer, will get new date after subtraction

Return Value: None

15.4 Coding
Now we will go to the next step that is coding. Here we write logic for each function given inm
and finally write the code in C language. The coding for all functions is given below.

.1e maintain one header file that contains all function prototypes and will be included in the file wl1
that function is used.

15.4.1 Dtmanip.h
void formDate(char *date, int y: int m, int d);
void splitDate(char *date,int *y,int *m, int *d);
int isValid(char *date);
int isLeap(int y);

Building project and creation of library

void addDays(char *date,int days,char *newDate);
void addMonth(char *date,int imonth,char *newDate);
void addYear(char *date,int iyear,char *newDate);
int cmpDate(char *date 1,char *date2);
int diffDays(char *date1,char *date2);
void diffYMD(char *date1,char *date2,int *y,int *m,int *d);
void subDays(char *date,int days,char *newDate);
void subMonth(char *date,int dmonth,char *newDate);

. void subYear(char *date,int dyear,char *newDate);

.void weekDay(char *date,char *dayWeek);
void revJulian(int j,int y,int *d,int *m);
int julian(int d,int m,int y);

15.4.2 Datefmt.c

469

/*To split and form
void splitDate(char
{

the date* /
*date, int *y, int *m,int *d)

L

date[2]=date[5]='\0';
*d=atoi (date) ;
*m=atoi(date+3) ;
*y=atoi(date+6);
date[2]=date[5]='/' ;

}/*End of splitDate()*/

void formDate (char *date, int y, int m, int d)
{

char arr [9] [3] = { "01" , "02 " , "03 " , "04 II , "05 " , "06 II , "07 " , "08 II , "09 " } ;
if (d<lO)

strcpy(date,arr[d-l]);
else

sprintf(date,"%d",d);
if(m<lO)

strcpy(date+3,arr[m-l]) ;
else

sprintf(date+3, "%d",m);
sprintf(date+6, "%d",y);
date[2]=date[5]='/' ;

} / *End of formDate () * /

The function splitDate() is used to get the values of day, month, year in different integer variables.
We have used the library function atoi() that converts a string to an integer. The first argument to
splitDate() is a string that contains the date in the format dd/mm/yyyy.

The function formDate() is used to form a date in format dd/mm/yyyy, from the values of day, month,
year. Here we have used the library function sprintf() to convert an integer to string.

15.4.3 Valid.c
/ *To find whether a date entered is valid or not. * /

470

int isValid(char *date)

int d,m,y;

if(date[2] !='/' II daterS] !='/' II strlen(date) !=10)
return 0;

s~litDate(date,&y,&m,&d);

C in Depth

if(d==O II m==O
retlfrn' 0;

if (d<l I I d>31
return 0;

II'y==O)

II m<l II m>12)

if. (m==2)
{

/ *check for number of days in February* /

if (d==29 && isLec>.p (y))

return 1;
if (d>28)

return 0;
} .

if(m==4 II m==6 II m==9 II m==l1)/*Checkfor days in april, june, sept,
nov* /

if(d>30)
return 0;

This function returns 1 if the date is valid, otherwise it returns zero. In this function, initially we chec
the Jonnat of the date. If the date is not in the format dd/mm/yyyy, then it is invalid. After this we
call function splitDate() to get the values of variables y, m, d. Inside splitDateO we have used atoi
) which returns 0 if it can't successfully convert string to an integer. For example suppose the use
enters the date as : 09/ii/1988, here the value of variable m will be zero since atoiO would not wo •
successfully. So if any of the variables y, m, d has value zero, then the date is invalid. Rest of the
function is simple.

return
}/*End of

1 ;

isValid()*/

15.4.4 Leap.c
int isLeap (int year)

if (year%4==0 && year%100! =0 II year%400==0)
return 1;

else
return 0;

}/*End of isLeap()*/

15.4.5 Julian.c
/ *Function to calculate julian days * /

uilding project and creation of library 471

::.::It julian(int d, int m, int y)

int j=d;
switch(m-l)
{

case 11: j+=30;
case 10: j+=31;
case 9 : j+=30;
case 8: j+=31;
case 7 : j+=31;
case 6 : j+=30;
case 5 : j+=31;
case 4 : j+=30;
case 3 : j+=31;
case' 2 : j+=28;
case 1: j+=31;

}

if(isLeap(y) && m!=l && m!=2)
j=j+l;

return j;
I*End of julian()*/

"Function to get
id revJulian (int

the
j,

value
int y,

of day and month
int *d, int *m)

from julian days */

int i;
int month[13]={0,31,28,31,30,31,30,3i,31,30,31,30,31};
if (isLeap (y))

month[2]=29;
for(i=1;i<=12;i++)
{

if (j <=month [i])
break;

j=j-month[i];

*d=j;
*m=i;

End of revJulian()/

e logic of finding out the julian day is given in Problem 5(program P5.40) of Chapter 5

e function revJulian() finds out the value of day and month when the value of julian day and year
known. The array month stores the number of days in each month.

5.4.6 Wcekday.c
"To find day of week from a given date --* /
:~nclude<string.h>

id weekDay (char *date, char *dayWeek)

int d,m,y,j,f,h,fh,day;
splitDate(date,&y,&m,&d);

.._---------
472

j=julian(d,m,y) ;
f=(y-l)/4:
h=(y-l)1100;
fh=(y-l)/400;
day=(y+j+f-h+fh)%7;
switch(day)
{

C in Dep

case 0:
case 1 :
case 2 :
case 3 :
case 4 :
case 5:
case 6 :

strcpy(dayWeek,"Saturday"); break;
strcpy (dayWeek, "Sunday"); break;
strcpy(dayWeek,"Monday"): break:
strcpy(dayWeek,"Tuesday"): break;
strcpy (dayWeek, "Wednesday"); break:
strcpy(dayWe~k,"Thursday"): break;
strcpy (dayWeek, "Friday"); break;

}

}/*End of weekDay ()>:.1

The logic of this function is similar to that given in P5.40.

15.4.7 Cmpdate.c

int dl, ml, yl, d2, m2, y2;
splitDate(datel,&yl,&ml,&dl) ;
splitDate(date2,&y2,&m2,&d2) ;

/ *To compare two
int cmpDate (char

°if(yl<y2)

return 1·,
if (yl>y2)

return -1 ;
if(ml<m2)

return 1·,
if (ml>m2)

return -I:
if (dl<d2)

return 1·,

dates*/
*datel,char *date2)

if (dl>d2)

return -1:
return 0;

}/*End of cmpDate()*/

This function returns 1 if date1 falls before date2,

returns -1 if date2 falls before date1

returns 0 if both dates are same.

15.4.8 Diffymd.c
/*To
void

get difference of two dates in years, months and
diffYMD(char "*datel, char *date2, int *y, int *m, int

days*/
*d)

b

Building project and creation of library

int dl, ml, yl, d2, m2, y2;
splitDate(datel,&yl,&ml,&dl) ;
splitDate(date2,&y2,&m2,&d2) ;
if(d2<dl)
{

if (m2==3)
{

if(isLeap(y2)
d2=d2+29;

else
d2=d2+28;

else if (m2==5 II m2==7 II m2==lO II m2==12)
d2=d2+30;

else
d2=d2.+31;

m2=m2-1;
}

if (m2<ml)
{

y2=y2-1;
m2=m2+'12 ;

}

*y=y2-yl;
*m=m2-ml;
*d=d2-dl;

}/*End of diffYMD() */

The logic of this function is similar to that given in program P5.37.

15.4.9 Diffdays.c
/*To get difference of two dates in days*/
int diffDays (char *datel, char *date2)

int dl,ml,yl,d2,m2,y2,jl,j2;
int y,d;i,days;
d=O;
splitDate(datel,&yl,&~l,&dl);

splitDate(date2,&y2,&m2,&d2) ;
jl=julian(dl,ml,yl);
j2=julian(d2,m2,y2);
if (yl==y2)

return (j2-jl);
for(i=yl+l;i<=y2-1;i++)
{

if(isLeap(i»)
d=d+366;

else
d=d+365;

}

if (isLeap (yl))

473

So total difference in days = 240 +1461 + 276 = 1977

If both the dates are in the same year the~ we can find out the difference simply by subtracting the
julian days.

Suppose we want to find out the difference in dates 5 May 1970 and 3 Oct 1975. The difference in
days will be sum of three components D 1, d, D2.

D1 = 365 ..:.- julian day of 5 May 1970 = 365 ~ 125 = 240
D2 = julian day of 3 Oct 1975 = 276
d = Total days in years from 1971 to 1974 = 365 + 366+ 365 +365 = 1461

} / *End of subYear () * /

C in Depth

3 Oct 1975

dDl

5 May 1970-<:----~r-(--------f
D2

days=(366-jl)+d+j2;
else

days=(365-jl)+d+j2;

15.4.11 Subyear.c
/ *To subtract years from a date* /
void subYear(char *date,int dyear,char *newDate)
{

/ *To add years to a date* /
void addYear(char *date,int iyear,char *newDate)
{

if(d==29 && m==2 && !isLeap(y))
d=28;

formDate(newDate,y,m,d) ;

15.4.10 Addyear.c

int d,m,y;
splitDate(date,&y,&m,&d);
y=y+iyear;
if (d==29 && m==2 && ! isLeap (y))

d=28;
formDate(newDate,y,m,d);

} / *End of addYear () * /

splitDate(date,&y,&m,&d) ;
y=y-dyear;

int d,m,y;

return days;
}/*End of diifDays()*/

474

Building project and creation of library
j

15.4.12 Addmonth.c
/ * To add months to' a date* /
void addMonth (char *date, int imonth, char *newDate)

int d,m,y,quot,rem;

splitDate(date, &y, &m,&d);

quot=i!llonth/12;

rem=imonth%12;

y=y+quot;

m=m+rem;
if(m>12)

(

y=y+l;

m=m-l,2 ;
}

if (m==2 && d>=29)
{

if (! isLeap (y))

d=28;
if (isLeap (y))

d=29;
}

if: (m==4 II m==6 II m==9 I I m==ll) && d==31)

d=30;
formDate(newDate,y,·m,d);

} / *End of addMonth () * /

15.4.13 Submonth.c
/ *To subtract months from a date* /
void sUbMonth (char *date, int dmonth, char *newDate)
{

int d, m, y, quot, rem;
splitDate(date,&y,&m,&d) ;

quot=dmonth/12; w.\.
rem=dmonth%12; \-

y=y-quot;

m=m-rem;
if (m<=O)
{

y=y-l;

m=m+12;

}

if (m==2 && d>=29)

{

if (! isLeap (y»

d=28;
if (isLeap (y))

d=29;
}

if «m==4 I I m==6 II m=;:;9 I I m==ll) && d==31)

475

476

d=30;
formDate(newDate,y,m,d) ;

} / "'End of subMonth () * /
I

15.4.14 Adddays.c
/*To add days to a date*/
void addDays (char *date, int days, char *newDate)
{

int dl, ml, yil, d2, m2, y2;
int jl,x,j2,k;
splitDate(date,&yl,&ml,&dl) ;
jl=julian(dl,ml,yl) ;
x=isLeaphrl) ? 366-jl 365-jl;
if (days1::x)
{

j2=jl+days;
y2=yl;

}

else

days=days-x;
y2=yl+l;
k=isLeap(y2) ? 366: 365;
while(days>=k)
{

C in Depth

Suppose we want to add days to the date 5 May 1970. Initially we'll find out the julian day(jl) of this
date which comes out to be 125. Now we'll try to find out the year and julian day(j2) of the new date,
and after that we'll use function revJulian() to find out the exact day and month of the new date.

First of all we'll find out the remaining days of the year 1970 by subtracting jl from 365..

This valu~ comes out 240 and is stored in variable x. Now if the days to be added are less than or
equal to x, then year of the new date will remain same and the julian day of the new date can be found
out by writing j2 = jl + days; For example if we have to~dd 200 days to 5 May 1970, then value
of j2 will be 125 + 200 = 325, so after calling revJulian() and formDate() we get the new date as
21/11/1970.

Suppose we have to add 1900 days to 5 May 1970. First we'll subtract x=240 from 1900

477/lilding project and creation of library

To subtract days from a date /
~oid subDays(char *date,int days,char *newDate)

ames out 1660), after this we'll reach the next year i.e. 1971. So now we have to add 1660 days
:0 1 Jan 1971. Now keep on subtracting the days of years from 1660 till you get a value less than
65(or 366 in case of leap year).

1660 - 365 = 1295 , we've reached 1 Jan 1972
1294 - 366 = 929, we've reached 1 Jan 1973 (subtracted 366 since 1972 is leap)
929 - 365 = 564, we've reached 1 Jan 1974 .
564 - 365 = 199, we've reached 1 Jan 1975 (199 < 365)

_-ow the year y2 is 1975 and the julian day j2 is 199, so on calling revJulian() and fonnDate() we'L
set the exact date which comes out to be 18/07/1975

5.4.15 Subdays.c

int d1, m1, y1, d2, m2, y2;
int j1,j2,x,k;
splitDate(date,&y1,&m1,&d1) ;
j1=julian(d1,m1,y1) ;
if(days<j1)
{

j2=j1-days;
y2=y1;

}

else

days=days-j 1; / *Now subtract days from 1st Jan y1 * /
y2=y1-1;
k=isLeap(y2)?366:365;
while(days>=k)
{

if (isLeap (y2))
days=days-366';

else
days=days-365;

y2- -;
k=isLeap(y2)?366:365;

}

j2=isLeap(y2)?366-days:365-days;
}

revJulian(j2,y2,&d2~&m2);

formDate(newDate,y2,m2,d2) ;
• / *End of subDays () * /

-:be logic of this function is somewhat similar to that of addDays().

5.4.16 Main.c
=include<stdio.h>
-include "dtmanip. h"
ain ()

l

478 C in Depth

int choice;
char date[ll] ,date1[ll] ,date2[ll];
char dayWeek[10] ,newDate[ll];
int iyear, imonth, dyear, dmonth, days;
int y,m,d;

whi1e(1)
.{

switch(choice)
{

printf ("1. Date validation\n");
printf ("2. Compare ..9.ates\n");
printf ("3. Differenc~~-of Dates in days\n");

. printf (" 4. Dif ference of Dates in years, months, days \n") ;
printf ("5. Day of week\n");
printf("6. Add years\n");
printf("7;. Ac1d months\n");
printn"8. Add days\n");
printf("9. Subtract years\n");
printf ("10. Subtract months\n");
printf("ll. Subtract days\n");
printf("12. Exit\n");
printf ("Enter your choice ") ;
scanf("%d",&choice);

case 1:
printf ("Enter date (dd/mm/yyyy) ") ;
scanf("%s",date) ;
if(isValid(date))

printf ("Valid date\n");
else

printf ("Not a Valid Date\n");
break;

case 2:
printf ("Enter first date (dd/mm/yyyy) ") ;

. scanf("%s",date1);
printf ("Enter second date (dd/mm/yyyy) ") ;
scanf("%s",date2);
if(!isValid(date1) II !isValid(date2»
{

printf ("Enter only valid da,tes\n");
break;

1)
\n",date1,date2) ;

-1) \

\n",date1,date2);

%s are same. \n" ,dat

date<.:,)
Date ,~\ %s
dat~2 \)

Date \ %s
\

date1,
%s <

date1,
%5 >

}

if(cmpDate(date1,date2)==0)
printf ("Date %s and Date
date2) ;

else if (cmpDate(
printf ("Date

else if (cmpDate (
printf ("Date

~uilding project and creatIOn oJ Iwrary

break;
case 3:

printf ("Enter first date (dd/mm/yyyy) ") ;

scanf("%s",datel) ;
printf ("Enter second date (dd/mm/yyyy) ") ;

scanf("%s",date2) ;
if(!isValid(datel) II !isValid(date2»

{
printf ("Enter only valid dates\n");

break;
}
if(cmpDate(datel,date2)==l)

days=diffDays(datel,date2) ;

else
days=diffDays(date2;datel) ;

printf ("Difference in days %d\n", days) ;

break;
case 4:

printf (".Enter first date (dd/mm/yyyy) ") ;

scanf("%s",datel) ;
printf ("Enter second date (dd/mm/yyyy) ") ;

scanf("%s",date2) ;
if (! isVa 1 i d (da tel) I I ! isVa 1 i d (da t e 2))

{
printf ("Enter only valid dates\n");

break;
}

if{cmpDate(datel,date2)==l)
diffYMD(datel,date2,&y,&m,&d) ;

else
diffYMD(date2,datel,&y,&m,&d) ;

printf ("Difference of the two dates is ") ;
printf("%d years %d months %d days\n",y, m, d);

break;

case 5:
printf ("Enter date (dd/mm/yyyy) ") ;

scanf("%s",date) ;
weekDay(date,dayWeek) ;
printf("Day of week is %s\n",dayWeek);

break;

case 6:
printf ("Enter date (dd/mm/yyyy) ") ;

scanf("%s",date) ;
if(!isValid(date»
{

printf ("Enter a valid date\n");

break;
}
printf ("Enter the number of years to be added ") ;

scanf("%d",&iyear) ;
addYear(date,iyear,newDate) ;

48~ C in lJept

printf ("Now the new date 'is %s\n", newDate) ;
break;

case 7:
printf ("Enter date (dd/mm/yyyy) ") ;
scanf(Y%s",date);
if(!isValid(date))
{

printf ("Enter a valid date\n");
break;

}

printf ("Enter the number of months to be added ") ;
scanf("%d",&imont~) ;
addMonth(date,imonth,newDate) ;
printf("Now the new date is %s\n",newDate);
break;

case 8:
printf ("Enter date (dd/mm/yyyy) ") ;
scanf ("%s", date) ;
if(!isValid(date»
{

printf ("Enter a valid date\n");
break;

}'

printf ("Enter the number of days to be added ") ;
scanf("%d",&days);
addDays(date,days,newDate);
printf ("Now the new date is %s\n", newDate) ;
b'reak;

case 9:
printf("Enter date (dd/mm/yyyy) ");
scanf("%s",date) ;
if(!isValid(date»
{

printf ("Enter a valid date\n");
break;

printf ("Enter the number of ye'ars ,to be subtracted
scanf("%d",&dyear); i
subYear(date,dyear,newDate) ;
printf("Now the new date is %s\n",newDate);
break;

case 10:
printf ("Enter date (dd/mm/yyyy) ") ;
scanf("%s",date) ;
if(!isValid(date»
{

printf ("Enter a valid date\n");
break;

}

printf ("Enter the number of months to be subtracted
scanf("%d",&dmonth);

valid date\n");
\

Building project and creation of library

subMonth(date,dmonth,newDate);
printf ("Now the new date is %s\n", newDate) ;
break;

case 11:
printf ("Enter date (dd/mm/yyyy) ") ;
scanf("%s",date) ;
{f(!isVa1id(date»
{

printf ("Enter a
break;

481

}

printf ("Enter the number of days to be subtracted ") ;
scanf("%d",&days);
subDays(date,days,newDate) ;
printf ("Now the new date is %s\n", newDate) ;
break;

case 12:
exit (1) ;

default:
printf ("Wrong choice\n");

}/*End of switch*/
}/*End of while*/

}/*End of main()*/

15.5 Building Project in Turbo C
I. First go to Project -> Open Project

Create a project file DT.prj
2. Now a "window will open that will display all files in the project. Right now we don't have any

file added in project. "
3. Now go to menu option Project -> Add Items and ,add a file in the project. The added file will

come in project window.
Similarly add all files one by one !n the project. Now you can see all the files in project window.
Now you can open any file by double clicking on that item in project window. Any file can be
deleted from the project by selecting it and pressing Delete or from the menu option delete item.

6. Now go to Compile -> Build All, it will compile all the files and build the project. All the errors
will come in window for each file. If there is no error then it will show success,
Now go to Run -> Run and program will run.
Now close all windows including project item window.
Now go to Project -> Close Project for closing the project.

15.6 Testing
_ ow we go for next and last step that is testing. Here we write different test cases for all modules
and see whether the modules give correct results for each case. We perform testing for each individual

odule which is called module te"sting, as well as we do integration testing which tests that after
tegration also all modules are working fine or not or we find out which module is giving problem
er integration.

our project we will test functionality after integration because here module testing and integration. "

482 C in Depth

testing is more or less same. So we will check functionality with different test cases if any errors are
coming then we will modify that particular part of coding and do the testing again.

15.7
C

,

Creation Of Library And Using it in your Program in Turbo

Suppose we want to add a module in library. First we will produce .obj file by compilation then we
will add the function of .obj file to library with the help of tlib utility. The whole process will be as
1. Produce the .obj file by compiling file as-

d:\> tcc -c xyz.c (ENTER)
Now xyz.obj will be created.
We can also make the .obj file by Alt + F9:

2.' Now we will add all the functions of xyz.obj in new library as
d:\> tlib ABC.lib+xyz.obj (ENTER)

Now new library ABC.lib will be created which will contain all the functions of XYZ.obj.

3. Create one header file named ABC.h which will contain prototype of all the functions available in
library ABC.lib.

4. Now you can call any function of library ABC.lib by including header file ABC.h.
5. Suppose we want to add some more modules. First we will get the .obj file of all modules then

they will be added as-
d:\> tlib ABC.lib+XYZ1.obj+XYZ2.obj+XYZ3.obj (ENTER)

Now we will create library dtmanip.lib for our Date project and will call the functions in one sample
file.

1. First we will produce .obj files for all modules as-
d:\> tcc -c- Datefmt.c Valid.c Leap.c Julian.c Weekday.c Cmpdate.c Diffymd.c Diffdays.
Addyear.c Subyear.c Addmonth.c Submonth.c Adddays.c Subdays.c

This will produce .obj files for all modules. ~

2. Now we will create one new library dtmanip.lib for date manipulation by adding these modul
d:\>tlib dtmanip.lib+Datefmt.obj+Valid.obj+Leap.obj+Weekday.obj+Cmpdate.obj+
Diffdays.obj+Diffymd.obj+Addyear.obj+Addmonth.obj +Adddays.obj+Subyear.obj+
Submonth.obj+Subdays.obj+ Julian.obj

Now new library dtmanip.lib will be created, which will contain all the functions of above ~odul

3. We will create one header file dtmanip.h, which is already given before.
4. Now we will create one sample file like main.c of Date project and call the functions availab :

in dtmanip.lib.
5. Create new project testlib and add dtmanip.h, main.c and dtmanip.lib in this project.

I

6. Now we can build and run this project.

So now we have date manipulation library that can be used anywhere else also whenever date rela
manipulation is required.

15.7.1 Deletion of a Module From Library

We can delete any module from library as-

d:\> tlib dtmanip-Diffdays

Building project and creation of library 483

This will delete the module of Diffdays from dtmanip library.

15.7.2 Getting Modules From Library

We can get module from library as-

d:\> tlib dtmanip*Valid

Now we will get the Valid module, from dtmanip.lib. This can be added in different library as-

d:\> tlib newdt.lib+Valid.obj

This will add Valid module which we got from dtmanip.lib, into newdt.1ib.

15.7.3 Changing Version Of l\1odule In Library

This can be done by deleting and then adding a particular module from library as

d:\> tlib dtmanip-Adddays

This will delete the module Adddays from dtmanip.lib library.

d:\> tlib dtmanip+Adddays.obj

This will add the new version of module Adddays in dtmanip.lib library.

We can do the same thing in one step also as-

d:\> tlib dtmanip-+Adddays

This will delete the Adddays module froni dtmanip.lib and add the new version ofAdddays in dtmamp.lib.

15.8 Building Project On Unix

We require makefile concept for building project on unix platform. Unix provides a utility make to build
project. This utility takes care of dependencies.

We know very well how to compile files with unix cc compiler and get the object and executable file.

Suppose we want to compile a single file main.c. Then it looks very easy-

cc -0 Date main.c

It will compile main.c and give the executable Date.

Suppose we have more than one file then we can compile them as-

ee -0 Date main.c Datefmt.e Valid.c Leap.e Weekday.e Cmpdate.e Diffdays.e Diffymd.e Addyear.c
AJdmonth.c Adddays.e Subyear.e Submonth.c Subdays.c Julian.c

Now it will compile all the files and give the executable Date as output.

Suppose we are compiling all these files first time then it looks fine. But suppose we are changing source
code of some file and again compiling then it will be a time taking process. We can provide .0 compil.ed
object file of them, which are not changed. Suppose only main.c is changed and rest of them are same
then we can use .0 object file of rest of them as-

cc -0 Date main.c Datefmt.o Valid.o Leap.o Weekday.o Cmpdate.o Diffdays.o Di~ymd.o Addyear.o
Addmonth.o Adddays.o Subyear.o Submonth.o Subdays.o Julian.o

We can create only object file with -c option as-

ce -c file.c

So now we know that we have no need to compile all the files again if their source is nelt changed.
We can use their object file itself./But this is always very difficult to remember that which file is c.hanged

'4
484 C in Depth

and which one need not to recompile again. Even compiling these files again and again on command
line is also a big problem.

The solution is make utility. This utility takes care. of all these problems and it even provides some more
facility to manage project in a better way.

15.8.1 Writing Makefile
make utility uses makefile for building project. This makefile contains commands that tell make utility
how to build your project with given source files. This makefile contains the dependency rules and
construction rules.

left side : right side

cc right side (compilation by using options for linking library)

Here in first line, left side is the target and right side is the source files on which target is dependent
Second line is for the construction. If any source file is changed then make will go for construction
rule otherwise it will not do anything. We have to understand what exactly make utility does with
makefile.
1. It reads makefile and comes to know which object file and library is needed for target and the

it checks what source files are needed for each object.
2. It checks time and date for each object file against dependent source, if any source is of later

date than its object file, then it will apply construction rule for that particular object.
3. Now it will check time and date oftarget against dependent object file if any object file is of later

date than it's target then it will apply construction rule for target.

Now we will see how will be our makefile for Date project then we will see what is the meaning o~

each line of our makefile.

Makefile 1:

#--------------------
Date project Makefile

#

#

TARGET=Dt

OBJS=Datefmt.o Valid.o Leap.o Julian.o Cmpdate.o Adddays.o Addmonth.o Addyear.o \
Subdays.o Submonth.o Subyear.o Diffymd.o Diffdays.o Weekday.o Main.o

$(TARGET):$(OBJS)

cc -0 $(TARGET) $(OBJS)

Datefmt.o:Datefmt.c

cc -c Datefmt.c·

Valid.o:Valid.c

cc -c Valid.c

Leap.o:Leap.c

cc -c Leap.c

-,uilding project and creation of library 485

Date project Makefile

S=Dtaefmt.o Valid.o Leap.o Julian.o Cmpdate.o Adddays.o Addmonth.o Addyear.o \

Subdays.o Submonth.o Subyear.o Diffymd.o Diffdays.o Weekday.o Main.o

(TARGET)

:\RGET):$(OBJS)

lian.o:Julian.c

cc -c Julian.c

mpdate.o:Cmpdate.c

cc -c Cmpdate.c

ddays.o:Adddays.c

cc -c Adddays.c

-_ dmonth.o:Addmonth.c

cc -c Addmonth.c

- dyear.o:Addyear.c

cc -c Addyear.c

bdays.o:Subdays.c

cc -c Subdays.c

- month.o:Submonth.c

cc -c Submonth.c

_::byear.o:Subyear.c

cc -c Suby·ear.c

dfymd.o:Diffymd.c

cc -c Diffymd.c

- days.o:Diffdays.c

cc -c Diffdays.c

rekday.o:Weekday.c

cc -c Weekday.c

- .o:Main.c

cc -c Main.c

e can write the makefile as also.

486 C in Depth

cc $(OBJS) -0 $@

15.8.2 Building Project With Make

We can simply execute make as-

$make (ENTER)

It will search for file makefile in current directory and will build the project. But suppose we have man:
makefiles for different projects, then we can use some naming convention to name makefile for projects
Like we can name our project makefile as project_makefile. Here our project is Date so we can nam~

our makefile as Date makefile. .

We can execute this as-

Creation Of Library And Using In Your Program in Unix

First we will compile all the files for creating .0 for source files.

$cc -c Datefmt.c Valid.c Leap.c Julian.c Cmpdate.c Adddays.c Addmonth.c Addyear.c \

Subdays.c Submonth.c Subyear.c Diffymd.c Diffdays.c Weekday.c Main.c

This will produce .0 file for all source .c files.

Now we will assign all .0 files to one variable.

$OBJS= Dtaefmt.o Valid.o Leap.o Julian.o Cmpdate.o Adddays.o Addmonth.o Addyear.o \

Subdays.o Submonth.o Subyear.o Diffymd.o Diffdays.o Weekday.o Main.o

Library dt will be created with archiver ar as-

ar mv Libdt.a $OBJS

Now we will write file Main.c and call the functions of dt library in it.

Now Main.c will be compiled as-
cc -0 Dt Main.c -L. -ldt

3.

2.

4.
5.

15.9
Now we will see process for creation of library and how to call function of this library in another

1.

$make -f Date_makefile (ENTER)

I would like to recommend you to see the unix man page of make. This can be very useful for bu'
work, which also takes a slice of project time. Generally one person in team is devoted for handl" _
build work of project.

Chapter 16

Codv Optimization in C

16.1 Optimization is a Technique
When we think about optimization, it looks like we are talking only about making our code shorter.
But its not true, sometimes shorter code takes more execution time compared to large code. So here
comes performance, and it depends on whether you want shorter code that is good for maintenance
but less in performance, or larger code that is bad for maintenance but good in performance. Now we
will come to resource optimization. Generally resources are shared between different processes. Suppose
your program takes more resources, then definitely it will affect performance of other processes that
need same resources. So we have a need to write and optimize our program keeping in mind resources
e.g. processor's time. You will be surprised to know that most of the time, increasing of hardware
like processors comes only because of our bad programming like unnecessary variables, bad searching
and sorting algorithms. This is because we think only about running our program properly, and consider
about resources only after getting some problem. Companies are spending more than $50 million on
resources, adding more than 12 processors in single server, only because they don't consider other
things in programs and are helpless to find this individual problem. So our work is not only to write
program but also to develop the habit of writing optimized programs considering the overall Vlew of
system. That's why optimization is a technique because it considers many other things in program not
only codes. You will see more things later in each topic.

16.2 Optimization With Toor
The first tool with our code is compiler. We can do lot of optimization with our compiler itself. It provides
lot of options. So firstly we should understand our compiler better. Compiler manual can help you in
understanding different options. We should know what our compiler can do for us and what it cannot
do. So we do whatever it does not do for us and we will not do whatever it does for us. We have
some different tools, which can help us to write our code in a better way. Like we can use tool purify
to know where memory leak is coming in our code. Also we can use purecov to know how much
coverage is done. by our code, so that we can write code that has better coverage.

16.3 Optimization With Loop

16.3.1 Loop Unrolling

We can unroll small loops. Let us take an example
int a=5;
for(i=O;i<4;i++)
{

488

value[iJ=a;
a=a+5;

C in Depth

}

This can be simply written like this

int value[] = { 5, 10, 15,20 };

at initialization time. Alternatively it can be written in between program like this

value[0]=5;
value[1]=10;
value[2]=15;
value[3]=20;

This is obviously better than previous one but most of the times compiler does this automatically, but
we can expect little bit advantage and even it will be better to make a habit of writing optimized code.
You can get this advantage in matrix program.. .

16.3.2 Avoiding Calculations In Loops

We should avoid any calculation, which is more or less constant in value within the loop. The same
thing is true for avoiding calculation or anything, w~ich can be removed from inner loop.
for(i=O;i<10;i++)

value[iJ=b*(20-b/3*c%2)*i/2;

We can avoid this calculation and it can be written as
a=b*(20-b/3*c%2)/2
for(i=O;i<10;i++)
{

value[i]=a*i;

Always try to minimize things in inner loop because this can improve efficiency.

16.4

16.4.1

Fast Mathematics
•Avoid Unnecessary Integer Division

We know that division operation is slow so we shOl,I1d try to minimize the division operations. Let us
take an example-

int a, Q, c, d;

d = albic;

This division operation can be eliminate.d as-

d=a/(b*c);

Multiplication operation is more effective than division operation. So we should try to convert division
operation to multiplication. .

16.4.2 Multiplication And Division by Power Of 2

We know that base of computer understanding is binary(0 or 1) i.e. base of 2. So we always need
to do multiplication and division operations for numbers which are power of 2. One way is to do simple

Code Optimization in C 489

division or multiplication with the number, which is power of 2 as

a = a * 8 (8 is 23
)

a = a / 8 (8 is 23
)

The second way to perform the same operation is by using left shift « for multiplication operation
and right shift » for division operation. This can be done as-

a = a « 3 (or a = a * 23
)

a = a » 3 (or a = a / 23)

So,

a « b is equivalent to a * 2b and

a » b is equivalent to a / 2b

These bit operations will be much faster than multiplication and division operations. For simple operations,
the compiler may automatically optimize the code but in case of complex expressions it is always advised
o use· bit operations, which is more effective optimization.

Suppose we want to multiply by 6 then it can be written as-

a = a « 1+ a « 2;

Compiler can not optimize this code so we should always make habit of writing optimized code without
minking that it can be optimized by compiler or not.

16.5 Simplifying Expressions
ometimes we can reduce some operations by simplifying expressions. Let us see a simple example

x * y + Y *4

This can be simplified as

(x+4)*y

This will reduce one multiplication operation.

16.6 Declare prototypes for Functions
e should always declare prototype for functions. This will tell the compiler about functions and it

:an be helpful for compiler to optimize the code.

6.7 Better Way Of Calling Function
e know that calling a function means a stack will be setup with parameters of functions, so we should

ays try to reduce the parameter of functions, which can improve the stack mechanism. It will be
_ tter to use pointer instead of passing structure or big array, which can be overhead for stack and

decrease the efficiency of program. .

6.8 Prefer int to char or short

'e should always prefer int to char because C performs all operations of char with integer. In all
erations like passing char to a function or any arithmetic operation, first char will be converted into
teger and after completion of operation it will again be converted into char. For a single char this
y not affect efficiency but suppose same operation is performed 100 times in a loop then it can
rease the efficiency of program.

490

16.9 Use of Register Variables

C in Depth

. Register variables are' stored in CPU registers. If you are declaring a variable as register then it w'
be accessed from register instead of memory which will always be faster. We know that registers ar
limited so we should declare only those variables as register, which are heavily used. If we have nest
loops, then we should take the inner loop variables as register, because they will be used more tim
than outside loop variables.

16.10 Optimization With Switch Statement
Compilers translate switch statements in different ways. If case labels are small contiguous integer valu
then it creates jump table. This is very fast and doesn't depend on number of case labels also. If c
labels are longer and not contiguous then it creates comparison tree i.e. if.. .else statements. So in
case we should keep the most frequent label first and least frequent label should be at last. Let us tee
an example- .
switch(no_of_day
{

case 31:

break;
case 30:

break;
case 28:
case 29:

break;
default:

printf ("Incorrect value\n");
break;

}/*End of switch*/ ...

Sometimes we see lot of repeated code written in all cases except one or two statements. Let us
an example-
switch(expression)
{

case a:

break;
case b:

bre.ak;
case c:

common. statements;
different statements;
common statements;
break;

case d:
common statements;

Code Optimization in C

different statements;
common statements;
break;

case e:
common statements;
different statements;
common statements;
break;

case f:
common statements;
different statements;
common statements;
break;

default:
break;

491

Here we can take all cases together and can write common statements only once and different statements
in related cases using another switch. Here we will take case c, d, e, f together and write common
statements, then we can use another switch and write different statements in case c, d, e, f. Then after
this switch we can again write common statements. This problem is repeated by lot of programmers
because they don't use this trick. .
switch(expression)
{

case. a:

break;
case b:

break;
case c:
case d:
case e:
case f:

common statements;
switch(expression);
{

case c:
different statements;
break;

case d:
different statements;
break;

case e:
different statements;
break;

case f:
different statements;
break;

1 _

...----------
492

}/*End of switch*/
common statements;

·break;
default:

break;
}/*End o·f switch*/

Hopefully this will help lot of new programmers.

16.11 Avoid Pointer Dereference

C in Depth

We should always avoid. pointer dereferencing in loop or while passing it as parameter. It creates lot
of trouble in memory. Suppose it is used in loop then it will affect the efficiency. So better assign it
to some temporary variable and then use that temporary variable in loop.

16.12 Prefer Pre Increment/Decrement to Post Increment/Decrement
We should prefer pre increment/decrement to post increment/decrement wherever both of them have
been used for same work. In pre increment, it first increments the value and just copies to the variable
location but in post increment it first copies the value to temporary variable, increments it and then
copies the value to variable location. For a one time operation may be it will not affect but suppose
this operation is in 1000 time loop then it will sure effect the efficiency. So it will always be better
to use pre increment/decrement to get efficiency.

16.13 Prefer Array to Memory Allocation
Wherever possible we should use array instead of pointer with memory allocation. Accessing with array
index is always fast compared to dynamic storage. Basically it depends on the requirement also. But
if we are sure that we are not going to use storage more than particular size then we can prefer arra
for that particular size. Memory allocation and deallocation has some burden and in some circumstances
it can be avoided with array. You can take example of creating stack or queue, which will be better
with array instead of implementing with linked list when we know the size of stack and queQe will
not be more than particular size.

16.14 Use Array Style Code Rather Than Pointer
Pointer is special facility in C that distinguishes it from other languages. Effective use of pointer makes
C language more efficient. But it also creates problem for compiler to optimize code. Pointer can read
and write at any part of memory and it becomes difficult for compiler to optimize code which uses
pointer. In some places we can 'use pointer as array. Like we can use ptr[O], ptr[1] which will
make compiler's job easier for optimization.

16.15 Expression Order Understanding
In C we use lot of expressions in control statements and we also join more than one expressions b
I I or && operator. Let us take an example of I I operator-

A II B

Here first A will be evaluated, if it's true then there is no need of evaluation of expression B and condition
will become true. But if A is false then it will check for B, now if B is true then whole condition will
become true otherwise it will be false. Suppose probability of expression A becoming true. is very less
and B becoming true is high then most of the time after evaluating expression A it will go for evaluation
of B. So most of the time we are evaluating A unnecessarily. In this case, it 'would be better to put

Code Optimization in C 493

the expression B first in condition, which has higher probability of becoming true.

B I I A (preferred)

Nbw it will first check B and if it's true then condition will be true and it will skip most of the time
evaluation of A and will increase the performance. Now let us check one example of && operator-

C && D

Here first expression C will be evaluated and if its false then no need of evaluation of expression D
andcondition will become false. IfC is true then it will check for D, ifD is also true then whole condition
will become true otherwise it will become false. Here we will check which expression has more probability
of becoming false: that expression should be placed first expression in condition.

Now suppose probability of becoming true or false is equal in all expressions which are joined with
I I or && operator then the expression which can be evaluated faster than others should be first in
condition.

16.16 Declaration Of Local Function
We should always declare all the- functions used in a program and if the function is used in that file
only then it should always be declared .as static, that means scope of that function will be limited to
that file only. If it is not declared as static then it will be interpreted as extern and compiler will take
unnecessary burden for external linkage of this function because it will think that this can be used outside
file also.

16.17 Breaking Loop With Parallel Coding
We can write parallel coding by writing instructions in pipeline. We can write one instruction of loop
into parts, which can help to reduce the number of cycles and definitely increase the efficiency. Let
us take an example-
total=O;
for(i=l;i<=lOO;++i)

total += i;

Here we are simply evaluating the total uf numbers from 1 to 100. The same thing can be done as:
totall=O;
total"2=O;
tota13=O;
tota14=O;
total=O;

" for(i=1;i<=lOO;i=i+4)
{

totall=totall+i;
tota12=tota12+i+li"
tota13=tota13+i+2i
tota14=tota14+i+3i

}

total = total 1 + tota12 + tota13 + tota14i

It doesn't seem very attractive optimization but it can improve efficiency where big calculation is required
like in mathematics or graphics.

16.18 Trick to use Common Expression
We can extract common expression, which is used at many places in the program. Let us take an example-

494 C in Depth

x = a*lO/b;

y = c*SIb;

We can write the same as
temp = Sib;
x = a*2*temp;
y = c*temp;

Here we are avoiding evaluation of an expression by using temp variable and multiplication. Here the
expression is very small, but suppose it is a big one and used at lot of places tl1en it will be better
choice. These things are to be done manually by properly reviewing the code, because compiler will
not be able to do optimization for these types of tricks.

16.19 Declaring Local Variables Based On Size
The local variables should be declared based on their sizes. We should prefer to declare larger to smaller
datatype size variables. Compiler allocates variables in the same sequence in which they are declared.
Declaring larger to smaller datatype variables will help the compiler in alignment and padding. Let us

take an example-
int a;
float b;
long c;
double d, e[2];

This should be declared as
double e[2];
double d;
long c;
float b;
int a;

,':

16.20 Prefer Integer Comparison
We should always prefer integer comparison in conditions because it is faster as compared to any 0

data type.

16.21 Avoid String Comparison
We should try to avoid strings 'comparisons as much as possible. String comparison is very slo
it compares each character. Generally we use strcmp() function fO,r comparing two strings. But
is very slow and can be very inefficient if we have lot of data in strings for comparing. We kno
can't avoid comparing strings, but we can use some trick for the comparison:
1. Compare the index of '\0' of first string with the same index of second string.
2. Firstly compare first character of both strings; if they are same then only compare the full su_'-=-_
These two points can be very important in avoiding most of the string comparison.

Chapter 17

C and fis~embly Interaction

C has wonderful feature to interact with assembly. This makes it more useful. It's good that we can
interact with other language but the question arises why is it needed. We know very well that assembly
is a low level language and it can interact directly with hardware. It does manipulation in registers so
it is always fast compared to other languages. There are so many things that can be done with assembly
language only. We can use these features with C very easily. We ca~ write inline assembly routine in
our C code, as well as our C module can also interact with assembly module.

17.1 Inline Assembly l,anguage
We can write assembly statement in C language by using asm keyboard before each assembly-statement
ill our program.

Ex-

asm mov AX , 5

Let us take a C program to print a character by using assembly statement.
:<lain ()
{

asm mav d1, 65
asm mav ah,2
asm int 21 h

Here we are using INT 21 with assembly. Let us see its description

INT 21 H Service 2 - Character Output on

Input:

. DL= ASCII character

AH=2

For writing same thing in MASM we have to use keyword _asm and <ill the assembly statements will
e in block starting with' { , and ending with'}'.
ain ()

asm
mav d1,65
m'av ah,.2
int 21 h

}

496 C in Depth

Now we can compile and run this program like other C programs. Now you will think how it will happen.
Actually your C compiler parses' assembly code from your program, creates one assembly file and then
assembles it with the assembler (TASM or MASM), when it creates object file then this object file will
be linked to your C executable.

Now the question arises this can be done very easily in C language program, then why inline assembly
is needed. Remember interaction through hardware can be done best through assembly language only.
There are so many things, which cannot be done with C, that can be done only through assembly language
and there is no alternative C function available.

Suppose we want to get the scan code of any pressed key of keyboard. Every key has scan code including
combination of special keys- (Ctrl, Alt, Shift) and normal key. There is no C function available for getting
scan code of pressed key. But we can use INT 16 with assembly for getting scan code. Let us see
how INT 16 works.

INT 16H, service 0 - Read k~y from keyboard

Input: AH=O

Output: \ AH=Scan code AL=ASCII code
main()
{

asm mav ah,O
asm int 16 H

After these two asm statements, scan code will be available in AH register which we can use in another
part of program. So now you got a brilliant idea, start writing the program for keyboard interaction.

Now we want to take the data in C statement and use it in asm statements. Suppose we want to print
a string then we will need to use 9th routine of INT 21. See the description below- -

INT 21 H SeFice 9 - String Print

Input:

AH=9

DS:DX points to a string that ends in '$'

Service 9 of INT 21 is used to print the string which ends with '$'. Let us take an example program.
main()
{

char *ptr="C with Assembly $" ;
asm mav dX,ptr
asm mav ah,9
asm int 21 h

Here INT 21 Service 9 will print-

C with Assembly

Now we want to write assembly statements in\ user defined function. This can be written as
main()
{

func () ;

C and Assembly Interactio,: 497

func ()
{

asrn rnov dl,65
asrn rnov ah,2
asrn int 21 h

Here we have written asm statements for printing character 'A' in function func(). Suppose we want
to take this character in C statements then it can be as-
char ch= 'A' ;
main()
{

func () ;
}

func ()
{

asrn rnov dl, ch
asrn rnov ah, 2
asrn int 21h

Here we have written a function which is not passing any value and does not return any value.

Suppose we want to write a function which passes some value and we want to use these pararmeter
values in asm statement and want to return the value from function, then we will have to do it in some
different way.

In C, when we pass parameters it goes to the stack. It pushes the value of pararmeter instead of address,
and for returning we use assembly instruction RET. It pushes the pararmeter in reverse order.

Let us take a program where we don't pass any parameter-
main()
{

func () ;
}

func ()
{

asrn rnov d1, 65
asrn rnov ah,2
asrn int 21h

Here we are not passing any parameter, so the func() will be set up in stack as-

I I ~
~2 bytes ~4 bytes·

Small, Compact Medium, Large, Huge

Here in large, medium and huge return address is of 4 bytes because these memory models can have
more than 1 code segment.

498

Suppose we are passingpararmeters in our function. Let us take an example
main(.)
{

display('x', 'y');
}

display (char x, char y)

{

asm .

121 (Y) 2 bytes 121 (Y) 2 bytes

120 (X) 2 bytes 120 (X) 2 bytes

Return 2 bytes Return
4 bytes

\1/

Small, Compact Medium, Large, Huge

C in Depth

We know C pushes the parameters in reverse order(compiler dependent), so first y will be pushed an'
then x will be pushed in stack.(undefined)

Now the question is how to get these parameters from stack t9 use in asm statement. SP is the sta
pointer which points to the current word in stack. We can use Base pointer BP to store the positior:
of SP, so that with the help of BP we can get the parameter value from stack and then it can be us
in our asm statement.

Now we will see how we can write two assembly files with one file having a procedure that will
called in another file. Similar things we will do with other C and assembly files where we will call assemb •
procedure in C program as well as C functions in assembly program. But first we will learn how
link two assembly programs. Let us take a simple program that prints a single string-

CODE SEG SEGMENT

ASSUME CS:CODE &EG, DS:CODE SEG, ES:CODE SEG, SS:CODE SEG- \ - - -

ORG 100H

START: JMP DISPLAY

STR DB "Suresh Srivastava.$"

DISPLAY PROC NEAR

MOV DX, OFFSET STR

MOV AH, 9

INT 2lH

INT 20H

17.2 Linking Of Two Assembly Files

C and Assembly Interaction

DISPLAY ENDP

END START

499

h

Here our program has procedure to print the string. Let us take another program that calls procedure,
which is used to display the string.

CODE SEG SEGMENT

ASSUME CS:CODE_SEG, DS:CODE_SEG, ES:CODE_SEG, SS:CODE_SEG

ORG lOOH

START: DISPLAY PROC NEAR

CALL SUB DISPLAY

INT 20H

DISPLAY ENDP

SUB_DISPLAY PROC NEAR

JMP GO

ALL_OK D~ "Suresh Srivastava. $"

GO: MOY DX, OFFSET ALL_OK

MOY AH, 9

TNT 21H

RET

SUB DISPLAY ENDP

CODE SEG ENDS

END START

ow think about modular programming. Suppose we w·ant to write all the procedures in different files
and those procedures will be called in the main module. So we will have to link all the files. Let us
take an example program that has two files, one file has procedure which is called in another file.

MAIN.ASM

CODE SEG SEGMENT

ASSUME CS:CODE_SEG, DS:CODE_SEG, ES:CODE_SEG, SS:CODE_SEG

ORG lOOR

START:

DISPLAY PROC NEAR

CALL SUB DISPLAY

INT 20R

DISPLAY ENDP

CODE SEG ENDS

END START

500

EXPROC.ASM

CODE SEG SEGMENT

ASSUME CS:CODE_SEG, DS:CODE_SEG, ES:CODE_SEG, SS:CODE_SEG

SUB DISPLAY PROC NEAR

JMP GO

ALL DK DB "Suresh Srivastava. $"

GO: MOV DX, OFFSET ALL_OK

MOV AH, 9'

INT 21H

RET

SUB DISPLAY ENDP

CODE SEG ENDS

END

C in Depth

We can see here both the files are in code segment. END START and ORG statements are only in
MAIN.ASM. Because it can have only one entry and we want both files one after another in memory.

17.2.1 Memory Models

We have different memory models - tiny, small, medium, compact, huge which set the limit of code
and data area. So we select the memory model depending on our program requirements. Different models
and their limit for code, data and array are as given below-

Code Segment Data Segment Array
Tiny All in same segment
Small "< 64 K < 64 K < 64 K
Medium > 64 K < 64 K < 64 K
Compact < 64 K > 64 K < 64 K
Large > 64 K > 64 K < 64 K
Huge > 64 K > 64 K > 64 K

17.2.2 C And Segments in Library

We can link .assembly pr~gram with C program only when both of them have same segment narn
C standard hbrary uses dIfferent segment names based on their memory models. To overcome
problem, we ha~e simplified segment directive which is supported by turbo C as well as Microsoft C
We have followmg keywords for declaration.

.CODE code

.DATA Initialized data

.DATA? Uninitilized data

.FARDATA Initialized non-Dgroup data(Compact/Large/Huge)

C and Assembly Interaction

.FARDATA? Uninitialized non-Dgroup data(compact/Large/Huge)

501

Here we have no need to write like CODE_SEG, when we will use the memory model then correct
segment name will be placed. Let us see a program-

MAIN.ASM

.MODEL SMALL

.CODE

ORG ~OOH

START:

DISPLAY PROC NEAR

CALL SUB DISPLAY

TNT 20H

DISPLAY ENDP

END START

EXPROC.ASM

.MODEL SMALL

.CODE

SUB DISPLAY PROC NEAR

JMP GO

ALL_OK DB "Suresh Srivastava.$"

GO: MOY DX, OFFSET ALL_OK

MOY AH, 9

TNT 21H

RET

SUB DISPLAY ENDP

END

Here model is declared as SMALL, so the segment names will be automatically placed based on memory
model. Here code segment is automatically ended with the end of file. If data 'segment is available then
code segment will end when the data segment starts. We can see that we don't have to worry for
maintaining different segment names, with simplified directive, segment names will be placed based on
memory model. For using segment address, we will have to use w'ith @ prefix eg @code, @data.

~ow we have to link both the files, so procedure will be declared as EXTRN in MATN.ASM and it
will be declared PUBLIC when its definition is available. See the program below -for linking.

YIAIN.ASM

EXTRN SUB DISPLAYNEAR

.MODEL SMALL

L _

502

.CODE

ORG lOOH

START:

DISPLAY PROC NEAR

CALL SUB DISPLAY

INT 20H

DISPLAY ENDP

END START

EXPROC.ASM

PUBLIC SUB DISPLAY

.MODEL SMALL

.CODE

SUB DISPLAY PROC NEAR

JMP GO

ALL_OK DB "Suresh Srivastava.$"

GO: MOV DX, OFFSET ALL_OK

MOVAH,9

INT 21H

RET

SUB_DISPLAY ENDp·

END

C in Depth

Here we can see that SUB_DISPLAY is declared as PUBLIC in file EXPROC.ASM, so that it can be
called in another file. It is declared as EXTRN in MAIN.ASM, so it can be called in file MAIN.AS

d:\>TASM MAIN.ASM
d:\>TASM EXPROC.ASM
d:\>TLINK MAIN+EXPROC
d:\>EXE2BIN MAIN MAIN.COM
d:\>MAIN
Suresh Srivastava

17.3 Linking Assembly Procedure in C Program.
Now we will see how we can call one assembly procedure in C program. We will write main progran:
in C, which will call assembly procedure from asm program for getting the scan code of any key or
keyboard..

Main.c
extern int getscancode ();
main ()
{

C and Assembly Interaction 503

printf ("Scan code of pressed key = %x\n", getscancode ()) ;
}

getscancode() function will be defined in asm program, so here it will be declared as extern to call
this asm procedure in Cprogram. But this procedure name will be with (_) underscore because. for
,linking procedure in C this will be needed. Let us assume the memory model is small then our stack
will be as-

BP+2

BP
~.
~

Since we are not passing any parameter, so only return value of function will be available in stack frame.
See the asm procedure. below-

GET.ASM

.MODEL SMALL

.CODE

PUBLIC _getscancode

_getscancode PROC

PUSH BP

MOV BP, SP

MOV AH, 0

INT 16H

POPBP

RET

_getscancode ENDP

END

Here this procedure will get the scan code of pressed key and it will return this value. Here procedure
name is in small letters because C is case sensitive and it will search for label in small letters. But assembler
makes all public variables in capital letters, so we should use -mx option of asseinbler, so the same
case of public variable will be used. Now we can link the assembly procedure. with C program as-

d:\>tasm -mx GET.ASM

d:\>tcc Main.c GET.obj

We have seen how to call assembly procedure in C program, but there was no parameter in function.
Now we will see how to pass parameter in C function and how it can be used in assembly procedure.
Suppose we are calling one function ADDNUM in C program as-

MAIN.C
extern int ADDNUM (int, int) ;
main ()
{

int total, a=5, b=lO;
total=ADDNUM(a,b);

504

printf("Toatl=%d\n",total);

Now we will see how it will be in memory.

5 BP+6

10 BP+4

.Return BP+2

OldBP BP

5 BP+8

10 BP+6

Return

OldBP BP

C in Depth

Small, Compact Medium, Large, Huge
/

Suppose we are taking small men:lOry model then we can see position of a is BP+6 and that of b is
BP+4 in stack. Now/we can use this in assembly procedure. The assembly procedure for this will be
as-

ADD.ASM

.MODEL SMALL

.CODE

PUBLIC ADDNUM

ADDNUM PROC '

PUSH BP

MOV BP, SP

MOV AX, [BP+4]

MOV BX, [BP+6]

ADD AX, BX

POP BP

RET

ADDNUMENDP

END

Now we can link assembly procedure with C program as

d:\>tasm -mx ADDNUM.ASM

d:\> tcc MAIN.c ADDNUM.obj

/

b

Chapter 18

Library functions

18.1 Mathematical Functions
The header file math.h contains declarations for several exponential, logarithmic, trigonometric, hyperbolic,
and other mathematical functions. In all trigonometric functions, angles are taken in radians.

18.1.1 abs()

Declaration: int abs(int x);
It returns the absolute value of the argument. If the argument is positive then it returns the positive
value, if the argument is negative then it negates the value and returns the positive value.

18.1.2 acos()

Declaration: double acos(double x);
This function returns the arc cosine of x i.e. cos·lx. The argument should be in the range -1 to
1 and the return value lies in the range 0 to 7t. .

18.1.3 asin()

Declaration: double asin(double x);
This function returns the arc sine of x i.e. sin-Ix. The argument should be in the range -1 to 1
and the return value lies in the range -7t12 to 7t/2.

18.1.4 atan()

Declaration: double atan(double x);
This function returns the arc tangent of x i.e. tan-Ix. The argument should be in the range-l to
1 and the return value lies in the range -7t12 to 7t/2.

18.1.5 atan2()

Declaration: double atan2(double y, double x);
This function is used for computing the arc tangent of y/x i.e. tan-I (y/x). The return value lies
in the range -7t to 7t.

18.1.6 cabs()

Declaration: double cabs(struct complex x);
This function returns the absolute value of complex number.

506 C in Depth

18.1.7 ceil()

Declaration: double ceil(double x);
This function finds the smallest integer not less than x and returns it as a double. For example-

x = 2.4 return value 3.0

x =-2.4 return value -2.0

18.1.8 . COS()

Declaration: double cos(double x);
This function returns the trigonometric cosine of x. The value of the argument must be in radians
imd return value lies between -1 and 1.

18.1.9 cosh()

Declaration: double cosh(double x);

This function returns the hyperbolic cosine of x.

18.1.10 exp()

Declaration: double exp(double x);

This function returns the value of e.

18.1.11 fabs()

Declaration: double fabs(double x);

This function is same as abs() function but it computes the absolute value of floating point number.

18.1.12 floor()

Declaration: double f1oor(double x);
. .

This function finds the largest integer not greater than x and returns it as a double. For example-

x = 2.4 return value 2.0

x = -2.4 return value -3.0

18.1.13 fmod()

Declaration: double fmod(double x, double y);
It returns the floating remainder of x/yo The sign of the result is the same as that of x. If the
value of y is zero, the result is implementation defined.

x = 7.0, Y = 4.0 return value 3.0

x = 4.6, y = 2.2 return value 0.2

18.1.14 frexp()

Declaration: double frexp(double arg, int *exptr);

This function splits the first argument into mantissa and exponent such that

arg = mantissa* 2exponent

It returns the value of mantissa whose range is [0.5, 1), and the value of exponent is stored'
the variable pointed to by exptr i.e. *exptr gives the value of exponent. If the value of arg is

Library Functions

then the function returns 0 and the value stored in *exptr is also O.

18.1.15 ldexp()

Declaration: double ldexp(double arg, int exp);

This function is used for obtaining the value of the expression arg * 2exp
•

. 18.1.16 loge)

Declaration: double log(double arg);

This function returns the natural logarithm(base e) of argument.

18.1.17 logl0()

Declaration: double 10glO(double arg);

This function returns the base 10 logarithm of argument.

18.1.18 modf()

507.

Declaration: double modf(double arg , double *ptr);

This function splits the first argument arg into integer and fractional part. Both parts have the same
sign as argo The fractional part is returned by the function, and the integer part is stored in the
variable pointed to byptr .

18.1.19 pow()

Declaration: double pow(double x, double y);

This function returns the value of xY,

18.1.20 sine)

1:,' .

Declaration: double sin(double arg);

This function returns the trigonometric sine of the argument, where the argument is in r~ians.

18.1.21sinh()

Declaration: double sinh(double x);

This function returns the hyperbolic sine of X.

18.1.22 sqrt()

Declaration: double sqrt(double x);

This function returns the square root of x..

18.1.23 tan()

Declaration: double tan(double x);

This function returns the trigonometric tangent of X.

18.1.24 tanh()

DeClaration: double tanh(double x);

This function returns the hyperbolic tangent of X.

508

18.2 Character Type Functions

C in Depth

Header File: ctype.h

18.2.1 isalnum()

Declaration: int isalnum(int arg);
This macro returns a nonzero value if argument is alphanumeric(a... z, A ... Z, 0 ... 9), otherwise it"
returns zero.

18.2.2 isalpha()

Declaration: int isaJpha(int arg);
This macro returns a nonzero value if argument is alphabetic(a... z, A...Z), otherwise it returns
zero.

18.2.3 iscntrl()

Declaration: int iscntrl(int arg);-
The iscntrl() returns a non zero value if the argument is a control character, otherwise it returns
zero.

18.2.4 isdigit()

Declaration: int isdigit(int arg);

This macro returns a non zero value if the argument is a digit (0 ... 9), otherwise it returns zero.

18.2.5 isgraph()

Declaration: int isgraph(int arg);
This macro returns a non zero value if the argument is a graphic character (any printing character
except a space), otherwise it returns zero.

'18.2.6 islower()

Declaration: int _islower(int ,arg);

This macro returns a non zero value if the argument is a lowercase character (a... z), otherwise
it returns zero.

,18.2.7 isprint()

Declaration: int isprint(int arg);
This macroreturns a non zero value if the argument is printable character (including space), otherwise
it returns zero.

18.2.8 ispunct()
Declaration: int ispunct(int arg); ,

This macro returns a nonzero value if the argument is punctuation character, otherwise it returns
zero.

18.2.9 isspace()

Declaration: int isspace(int arg);
This macro returns a nonzero value if the argument is white space character (space, horizont

Library Functions

tab, vertical tab, form feed, new line, carriage return), otherwise it, returns zero.

18.2.10 isupper()

509

Declaration: int isupper(int arg);

This macro is used to check whether a given character is uppercase character (AZ) or not.
It returns nonzero if the argument is uppercase character, otherwise it returns zero.

18.2~11 isxdigit()

Declaration: int isxdigit(int arg); .

This macro is used to check whether a given character is hexadecimal digit(AF, a f, 09)
or not. It returns nonzero if the argument is hexadecimal digit, otherwise it returns zero.

18.2.12 tolower(}

Declaration: int tolower(int arg);

This macro is used to con~ert an uppercase character(A Z) into equivalent lowercase
character(az). It returns lowercase character if the argument is an uppercase character, otherwise
it returns unchanged value.

18.2.13 toupper()

Declaration: int toupper(int arg);

The macro toupper() is used to convert a "lowercase character(az) into equivalent uppercase
character(A....Z). It returns uppercase character if the argument is a lowercase character, otherwise
it returns unchanged value.

18.3 .String Manipulation Functions
Header file: string.h

18.3.1 strcat()

Declaration: char *strcat(char *str1, const char *str2);

This function is used to concatenate two strings. The null character from strl is removed and
str2 is concatenated at the end of strl. A pointer to the concatenated strings is returned by the
function.

18.3.2 strchr()

Declaration: char *strchr(const char *str, int ch);

This function returns the pointer to the first occurrence of the character cli in the string str. If
the character is not present in the string then it returns NULL.

#include<stdio.h>
#include<string.h>
main ()
{

char *p;
p=strchr("Multinational!', 'n');
printf("%s\nU,p) ;

l _

510

Output:

national

·18.3.3 strcmp()

Declaration: char *strcmp(const char *strl, const char *str2);

This function is used to compare two strings lexicographically.

strcmp(strl, str2) returns a value-

< 0 when strl < str2

= 0 when strl = = str2

> 0 when strl > str2

18.3.4 strcpy()

C in Depth

Declaration: char *strcpy(cha_r *strl, char *str2);

This function copies string str2 to strl, including the null character, and returns a pointer to the
first string.

183.5· strcspn()

Declaration: size_t strcspn(const char *strl, const char *str2)

This function returns the index of the first character of strl, which is matched with any .character
of str2. For example-

strcspn("abcmnop", "lmn");

strcspn("abcmnop", "In");

-strcspn("1234ABCD", "COT");

18.3.6 strlen()

will return 3

will return 4

will return 6

Declaration: size_t strlen(const char *str);

It returns the number. of characters in the string, exduding the null character.

18.3.7 strncat()

Declaration: char *strncat(char *strl, const char *str2, size_t length);

.This function is same as strcat() but it concatenates only a portion of a string to another string.
The null character from strl is removed and length characters of str2 are appended at the end
of strl, and at last a null character)s added at the end of strl. This function returns strl.

#include<stdio.h> /
#include<string.h>
main ()
{

char strl[lSJ="ABC";
strncat(strl, "DEFGHIJ",4);
printf ("%s\n" , strl) ;

Output:

ABCDEFG

--'------_...:

LibrarrFunctions

18.3.8 strncmp()

511

Declaration: int *strncmp(const char *arrl, const char *arr2, size_t length);

Header file: string.h
This function is similar to strcmp() but it compares the characters of the strings upto specified
length.

strncmp(strl, str2, len) returns a value-

< 0 when strt < str2

= 0 when strl= = str2

> o when strl > str2
#include<stdio.h>
#include<string.h>
main () .
{

int l,m,n,p;
1=strncmp("Deepali","Deepanjali",4);
m=s~rncmp("Deepali","Deepanjali",6);
n=strncmp("Suresh","Sur~iya"i3);

p=strncmp("Suresh","Suraiya",5) ;
printf("%d\t%d\t%d\t%d\n",l,m,n,p);

Output:

o
18.3.9

-2 0

strncpy()

4

Declaration: int *strncpy(char *strl, const char *str2, size_t length);
It is same as strcpy() but it copies the characters of the string to the specified length. Here str2
should be a null terminated string and strl should be an array.
If str2 has more than length characters, then strl might not be null terminated.
If str2 has less than length characters, then null characters will be added to strl at the end, till
the specified length of characters have been copied.

#include<stdio.h>
#include<string.h>
main ()
{

char str1 (10) ;
strncpy(str1,"Departmental",6) ;
str1(6)='\0' ;
printf("%s\n",str1);

Output:

Depart

512 C in Depth

18.3.10 strpbrk()

Declaration: char *strpbrk(const char *strl, const char *str2);

This function returns the pointer to first character of string strl, which matches with any character
.of str2. It returns NULL if there are no common characters in the two strings.
#include<stdio.h> '
#include<stririg.h>
main ()
{

char *pl, *p2, *p3 'j

pl=strpbrk("abcmnop","lmn")j
p2=strpbrk("abcmnop". "In") j

p3=strp~rk("1234ABCD","COT") j

printf("%s\t%s~t%s\n",pl.p2.p3)j

Output:

mnop nop CD

18.3.11 strrchr()

Declaration: char *strrchr(const char *str, int ch);
This function returns a pointer to the last occurrence of the character ch in the string point
to by str, otherwise it returns NULL.

#include<stdio.h>
#include<string.h>
main ()
{

char *p;
p=strrchr("Multinational", 'n');
pr int f ("% s \ n" •p) j

Output:

nal

18.3.12 strspn()

Declaration: size_t strspn(const char *strl, const char *str2);
This function returns the index of the first character of strl, which does not match with any char
from str2. For example- . (

strspn("cindepth", "datastructure") will return 1

strspn("abcdefghijk", "completedatabase") will return 5
strspn("1234ABCD", "AB12") will return 2

18.3.13 strstr()

Declaration: char*strstr(const char *arrl, const char *arr2); , .
This function is used to locate the first occurrence of a s'ubstring in another string. The se

Library Functions 513

argument is a pointer to the substring and the first argument is a pointer to the string in which
the substring is to be searched. This function returns a pointer to _the beginning of the first
occurrence of the substring in another string. If the substring is not present then it returns NULL.

#include<stdio.h>
#include<string.h>
maLl ()

char *ptr;
ptr=strstr("placementsection","cement") ;
printf("%s",ptr);

Output:

cement section

18A

18.4.1

Input/Output Functions

access()

Declaration: int access(constchar *fname, int mode);

Head(!r file: io.h
This function is used to see the existence.of file. It also checks the type of file. The possible
values oJ mode are as given below-

mode value

0 existence of file

1 executable file

2 write access

4 read access

6 read/write access

18.4.2chmod()

Declaration:- int chmod(const char *fname, int mode);

Header file: io.h
This function is used for changing the access mode of the file to the value of the mode. These
modes are as given below-

mode' meaning

S lREAD read access

S WRITE write access

S_IREAD I S_IWRITE read and write access

514 C in Depth

18.4.3 clearerr()

Declaration: void clearerr(FILE *stream);

Header file: stdio.h

This function is used to set the end of file and error indicators to O.

18.4.4 close()

Declaration: int close(int fd);

Header file: io.h
This function is called with a file descriptor which is created with a successful call to open()
or create). It closes the file and flushes the write buffer. It returns zero on success otherwise
it returns -1.

18.4.5 creat()

Declaration: int create const char *fname, int pmode);

Header file: io.h
This function creates a new file for writing. The file descriptor returns a positive value on,suc~ess
otherwise it returns -1. The permission mode determines the file access setting. The values 0

pmode are as:

permission mode meaning

S IREAD read only

S IWRITE write only

18.4.6 fclose()

Declaration: int fclose(FILE *fptr);

Header file: stdio.h
This function is used to close a file that was opened by fopen(). It returns EOF on error an
o on success.

18.4.7 feof()

Declaration: int feof(FILE *fptr);

Header file: stdio.h
The macro feof() is used to check the end of file condition. It returns a nonzero value if e
of file has been reached otherwise it returns zero.

18.4.8 ferror()

Declaration: int ferror(FILE *fptr);

Header file: stdio.h
The macro ferror() is used for detecting any error occurred during read or write operations
a file. It returns a nonzero value if an error occurs i.e. if the error indicator for that file is
otherwise it returns zero.

Library Functions 51S

18.4.9 fflush()

Declaration: int fflush(FILE *fptr);

Header file: stdio.h
This function writes any buffered unwritten output to the file associated with fptr. On success
it returns 0 and on error it returns EOF.

18.4.10 fgetc()

Declaration: int fgetc(FILE *fptr);

Header file: stdio.h
This function· reads a single character from a given file and increments the file pointer position.
On success it returns the character after converting it to an int without sign extension. On end
of file or error it returns EOF. .

18.4.11 fgets()

Declaration: char fgets(char *str, int n, FILE *fptr);

Header file: stdio.h
This function is used to read characters from a file and these characters are stored in· the string
pointed to by str. It reads at most n~1 characters from the file where n is the second argument.
fptr is a file pointer which points to the file from which characters are read. This function returns
the string pointed to by str on success, and on error or end of file it returns NULL.

18.4.12 fileno()

Declaration: int fileno(FILE *stream);

Header file: stdio.h

The function fileno() is used for returning the file descriptor of the specified file pointer.

18.4.13 fopen()

Declaration: FILE *fopen(const char *fname, corist char *mode);

Header file: stdio.h
The function fopen() is used to open a file. It takes two strings as arguments, the first one is
the name of the file to be opened and the second one is the mode that decides which operations(
read, write, append etc) are to be performed on the file. On success, fopen() returns a pointer
of type FILE and on error it returns NULL.

18.4.14 fprintf()

Declaration: fprintf (FILE *fptr, constchar *format [, argument, ...]);

Header file: stdio.h
This function is same as the printf() function but it writes formatted data into the file instead
of the standard output. This function has same parameters as in printf() but it has one additional
parameter which is a pointer of FILE type, that points to the file to which the output is to be
written. It returns the number of characters output to the file on success, and EOF on e!ror.

516 C in Depth

18.4.15 fputc()

Declaration: int fputc(int ch, FILE *fptr);

Header file : stdio.h
This function writes a character to the specified file at the current file position and then increments
the file position pointer. On success it returns an integer representing the character written, and
on error it returns EOP.

18.4.16 fputs()

Declaration: int fputs(const char *str, FILE*fptr);

Header file: stdio.h

This function writes the null terminated string pointed to by str to a file. The null character that
marks the end of string is I}ot written to the file. On success it returns the last character written
and on error it returns EOF.

18.4.17 fread()

Declar~tion: size_t fread(void *ptr, size_t size, size_t n, FILE *fptr);

Header file: stdio.h

This function is used to read an entire block from ,a given file. Here ptr is a pointer which points
to the block of memory which receives the data read from the file, size is the length of each item
in bytes, n is the number of items to be read from the file and fptr is a file pointer which points
to the file from which data is read. On. success it reads n items from the file and returns n, if
error. or end of file occurs then it returns -a -value -less than n.

18.4.18. fputchar()

Declaration: int fputchar(int arg).;

Header file: stdio.h

This function is used for writing' a character to standard output.

1~.4.19 fscanf()

Declaration: fscanf (FILE *fptr, const char *format [, address, ...]);

Header file: stdio.h

This function is similar to the scanf () function but it reads data from file instead of standard
input, so it has 'one more parameter which is a pointer of FILE type and it points to the file from
which data will be read. It returns the number of arguments that were assigned some values on
success, and EOF at the end of file.

18.4.20 fseek()

Declaration: int fseek(FILE *fp , long disp, int position);

Header file: stdio.h

This function is used for setting the file position pointer at the specified byte. Here fp is a file
pointer, displacement is a long integer which can be positive or negative and it denotes the number
of bytes which are skipped backward (if negative) or forward (if positive) from the positio
specified in the third argument. The third argument can take one of these three values.

Library Functions

Constant Value Position

SEEK SET 0 Beginning of file

SEEK_CURRENT 1 Current position

SEEK END 2 End of file

18.4.21 fstat().

517

Declaration: int fstat(int fd, struct stat *finfo);

Header file: sys/stat.h
This function is used for filling thtl file infonnation in structure finfo. The structure of finfo is
same as stat which is defined in sys/stat.b,

18.4.22 ftell()

Declaration: int fputs(FILE *stream);

Header file: stdio.h
This function returns the current position of the file position pointer. The value is counted from
the beginning of the file.

18.4.23 isatty()

Declaration: int isatty(int handle);

Header file: io.h
This function is used for checking whether the handle is associated with character device or not.
The character device may be a tenninal, console, printer or serial port. It returns nonzero on success,
otherwise it returns zero.

18.4.24 open()

Declaration: int open(const char *fname, int access, unsigned mode);

Header file: io.h
This function is used for opening a file. The access is the base mode with modifier. modifier is
taken by applying OR operator with base mode.

Base mode Meaning

O_WRONLY write only

o RDONLY read only
o RDWR read / write

Modifiers Meaning

o APPEND For appending
o BINARY binary file
o CREAT creates the file, if the file

doesn't exist and sets the
attribute with mode

518

o EXCL

o NDELAY
o TEXT
O_TRUNC

when it is used with 0_CREAT
it doesn't create file, if the
file already exists.
Unix compatible
text file
Truncates to ~ength 0 if file doesn't exist

C in Depth

.~

The parameter mode is used with only 0_CREAT modifier.

Mode Meaning

S_IREAD Read

S IWRITE Write

S_READ / S_IWRITE Read / Write

18.4.25 read()

Declaration: int read(int fd, void *arr, unsigned num);

Header file: io.h
This function is used for reading the files~ Here fd is the file descriptor, num is the number of
bytes read from the file and arr points to the array which has the number of bytes. read from
file. The file pointer position is incremented by the number of bytes read from file. If end of file
occurs then number of bytes read will be smaller than num.

18.4.26 remove()
Declaration: int remove(const char *fname);

Header file: stdio.h

This function is used for deleting the file. It returns 0 on success and -1 on error.

18.4.27 rename()
Declaration: int rename(const char *old, const char *new)

Header file: stdio.h
This function is used to rename a file. We can give full path also in the argument, but the drives
should be the same although directories may differ. On success it returns 0 and on error it returns
-1.

.'
18.4.28 setbuf()

Declaration: void setbuf(FILE *fptr, char *buffer);

Header file: stdio.h
The function setbuf() specifies the buffer that will be used by a file. The size of the buffer should
be BUFSIZ bytes, which is defined irt stdio.h. If setbuf() is called with null, then the I/O will
be unbuffered.

Library Functions

18.4.29 sopen()

519

Declaration: int sopen(const char *fname, int access, int shmode, int mode)

Header file: io.h
.The macro sopen() is used for opening a file in shared mode. This is used in network environment.
The access is the base mode with modifier. Modifier is taken by applying OR operator with base
mode.

Base mode Meaning

o WRONLY write only
o RDONLY read only
o RDWR read / write

Modifiers Meaning

o APPENn For appending
o BINARY binary file

O_C~AT creates the file, if the file
doesn't exist and sets the
attributes with' mode

O_EXCL when it is used with 0 CREAT
-

it doesn't create file, if the
file already exists.

o NDELAY
o TEXT text file
O_TRUNC

shmode is the share mode with the file. These are-.
shmode Meaning

SH COMPACT Compatibility mode

SH DENYRD Not allowed for read

SH DENYWR Not allowed for write

SH DENYRW Not allowed for read ! write

SH_DENYNO Allowed for read / write

SH_DENYNONE Allowed for read / write
'....

The parameter mode is used with only 0_CREAT modifier: The modes arr-

520

18.4.30 stat()

Base mode Meaning

S IREAD Read

S_IWRITE Write

S READ / S IWRITE Read / Write- -

C in Depth

Declaration: int state char *fname, struct stat *finfo);

Header me: sys\stat.h
This function is used for filling the file information in structure finfo. The structure of finfo is
same as stat which is defined in sys\stat.h.

18.4.31 sprintf()

Declaration: int sprintf (char *str,const char *controlstring [, argl, arg2,]);

Header file: stdio.h
This function is same as printf () function except that instead of sending the formatted output·
to the screen, it stores the formatted output in a string. This funct,ion returns the number of
characters output to the string excluding the null character and on failure it returns EOF.

18.4.32 sscanf()

Declaration: int sscanf (const char *str, const char *controlstring [, addressl, address2,]);

Header file: stdio.h
This function is same as the scanf () function except that data is read from a string rather than
the stan~ard input. We can read the formatted text from a string and convert it into variables of
different data types.-

18.4.33 tell()

Declaration: long tell(int fd)

Header file: io.h

This is same as ftell(). It is used for getting the current file pointer position.

18.4.34 tmpfile()

Declaration: FILE *tmpfile(void)

Header file: stdio.h
tmpfile() creates a temporary binary file and opens it in update mode(wb+). On success it returns
a pointer of type FILE that points to the temporary file and on error it returns NULL. The file
created by tmpfile() is temporary because it is automatically deleted when closed or when the
program terminates.

18.4.35 tmpnam()

char *tmpnam(char *arr)

Header file: stdio.h
This function is used for generating a unique file name. The number of different file naines that

Library Functions 521

can be generated by tmpnam() during the execution of program is specified by TMP_MAX, which
is defined in stdio.h file. This file name is stored in the array, which is pointed to by an.

18.4.36 unlink()

Declaration: int unlink(const char *fname)

Header file: stdio.h
This function is used tor deleting a file from the directory. We can give full pathname also as the
argument. The file should be closed before deleting. On success it returns 0 and on error it returns
-1 and errno is set to one of these values:

ENOENT

EACCES

Path or file name not found

Permission denied

<-.

·

Appendix A
-

fiSCIl Characters

ASCII value Character ASCII value Character ASCII value Character
000 NUL 049 1 098 b
001 SOH 050 2 099 c
002 STX 051 3 100 d-
003 ETX 052 4 101 e
004 EOT 053 5 102 f
005 ENQ 054 6 103 g
006 ACK 055 7 104 h
007 BEL 056 8 105 i
008 BS 057 9 106 j
009 HT 058 107 k
010 LF 059 , 108 1
011 VT 060 < 109 m
012 FF 061 = 110 n
013 CR 062 > 111 0

014 SO 063 ? 112 P
015 SI 064 @ 113 q'"
016 DLE 065 A 114 r
'017 DC1 066 B 115 - s
018 DC2 067 C 116 t
019 DC3 068 D 117 u
020 DC4 069 E 118 v
021 NAK 070 F 119 w
022 SYN 071 G 120 x
023 ETB 072 H 121 y
024 CAN 073 I 122 z
025 EM 074 J 123 {
026 SUB 075 K 124 I\
027 ESC 076 L· 125 }
028 FS 077 M 126 ~

029 GS 078 N 127 DEL
030 RS 079 0
031 US 080 P
032 blank 081 Q

",,033 .! 082 I R

"

~ -,

j

lue I Character
b
c
d
e
f
g
h
1

J
k
I

m
n
0

p
q
r
s
t
u
v
w
x
y
z
{

I
}
~

DEL

ASCII Characters

ASCII value Character ASCII value Charact

034 " 083 S
035 # 084 T
036 $ 085 U
037 % 086 V
038 & 087 W
039 , 088 X
040 (089 y

041) 090 Z
042 * 091 [
043 + 092 \
044 , 093]
045 - 094 1\

04.6 095 -
047 / - 096 ,

048 0 097 a

* Characters from 1 - 32 and character 127 are control cha

".,

Precedence and Associativity c

Appendix B

Onerator
()
[]
-7

+

++

*
&
(datatype)
sizeof

*

%
+

«
»
<
<=
>
>=

!=
&
/\

&&
I I
? :

Descrintion
Function call
Array subscript
Arrow operator
Dot operator
Unary plus
Unary minus,
Increment
Decrement
Logical NOT
One's complement
Indirection
Address
Type cast
Size in bytes
Multiplication
Division
Modulus
Addition
Subtraction
Left shift
Right shift
Less than
Less than or equal to
Greater than
Greater than or eoual to
Equal to
Not equal to
Bitwise AND
Bitwise XOR
Bitwise OR
Logical AND
Logical OR
Conditional operator

Precedenci

2

3

4

5

6

7

8
9

10
11
12
13

D

.' Precedence and Associativity of Operators

-

*= /= %=
+= -=& Assignment operators 14 Right to Left
= 1\ =
1=«= »=
, Comma operator 15 Left to Right

Appendix C

Conversion Specifications

%c - a single character

%d - a decimal integer

%f - a floating point number

%e - a floating point number

%g - a floating point number

%If - long range of floating po\nt number(for double data type)

%h - a. short integer

%0 - an octal integer

%x - ahexadecimal integer

%i - a decimal, octal or hexadecimal integer

%s - a string

%u - an unsigned decimal integer

The modifier h can be used before conversion specifications d, i, 0, u, x to specify short .integer and
the modifier 1 can be used before them to specify a long integer.

The modifier 1 can be used before conversion specifications f,e,g to specify double while modifier L
can be used before them to specify a long double.

..

528 C in Depth

9 OA39 0A28 8000
0 OB30 OB2~ 8100
- OC2D OC5F OCIF 8200
= OD3D OD2E 8300

I

lAlB lAOO[lASB lAm
] lB5D IB7D lBlD lBOO
, 273B 273A 2700, 2827 2822 .
, 2960 297E I
\ 2B5C ·2B7C 2BlC 2600

(same as Alt L)
, 332C 333C

342E . 343E
/ 352F 353F
Fl 3BOO 5400 5EOO 6800
F2 3COO 5500 5FOO 6900
F3 3DOO 5600 6000 6AOO
F4 3EOO 5700 6100 6BOO
F5 3FOO 5800 6200 6COO
F6 4000 5900 6300 6DOO
F7 4100 5AOO 6400 6EOO
F8 4200 5BOO 6500 6FOO
F9 4300 5COO 6600 7000
FlO 4400 5DOO 6700 7100
Fll 8500 8700 8900 8BOO
F12- 8600 8800 8AOO 8COO
BackSpace OE08 OE08 OE7F OEOO
Del 5300 532E 9300 A300 ~

Down Arrow 5000 . 5032 9100 AOOO
End 4FOO 4F3l 7500 9FOO
Enter lCOD lCOD lCOA A600
Esc OllB OllB OllB 0100
Home 4700 4737 7700 9700
Ins 5200 5230 9200 A200

.Keypad 5 4C35 8FOO
Keypad * 372A 9600 3700
Keypad - 4A2D 4A2D 8EOO 4AOO
Keypad + 4E2B 4E2B 4EOO
Keypad / 352F 352F 9500 A400
LeftArrow 4BOO 4B34 7300' 9BOO
PgDn 5100 5133 7600 A100
PgUp 4900 , 4939 8400 9900
PrtSc 7200
RightArrow 4DOO 4D36 74do 9DOO
SpaceBar 3920 3920 3920· 3920
Tab OF09 OFOO 9400 A500
Up AlTOW 4800 4838 8DOO 9800

- ,

!,40
#defme, 378
#else and #elif, 390
#error, 399.
#if And #endif, 390
#ifdef and #ifndef, 393
#line,399
#pragma, 400
#Undef,387
& ,408
&&,39
1\,409

1. 408
11,40
-,410
«,411
»,411

A

abs(), 505
access(), 519
acos(),505
actual arguments, 118
address operator, 197
AND (&&) Operator, 39
argc,367
argv[],367
arithmetic operators, 32

binary arithmetic operators, 32
unary arithmetic operators, 32

arrays, 158
arrays and functions, 165, 174
more than two dimensions, 173
one dimensional array, 158
two dimensional array, 167

asin(), 505
assembly and C interaction, 495

inline assembly language, 495
linking of two assembly Files, 498

Index

linking assembly procedure in C Program, 5
assignment operators, 35
associativity of operators, 47.
atan(),505
atan2(), 505
automatic type conversion, 44
automatic, 437

B

binary search, 176
bit fields, 426
bitwise operators, 407

bitwise AND (&), 408
bitwise left shift («), 411
bitwise OR (I), 408
bitwise right shift (»), 411
bitwise XOR (1\), 409
one's complement (-),410

break statement, 78
bubble sort, 181
buffer, 335

c
C character set, 7
cabs(),505
calloc(),233
ceil(),506
character I/O, 339
character type functions, 508
characteristics of C, 4
chmod(), 513
clearerr(), 364, 514
close(), 514
code optimization, 487
comma operator, 42
command line arguments, 367
comments, 16
compilation of C programs, 457
compound statement or block, 58

l
I

I,
f·

I

r

530

conditional compilation, 389
conditional operator, 41
const, 447
constants, 10

.character constants, 13
numeric constants, 11

. string constants, 13
symbolic constants, 13

continue statement, 80
control statements, 58
conversion specifications, 17
cos(),506
cosh(), 506
creat(), 514

n
data types, 10
delimiters, 9
design methods, 1

bottom-up design, 2
modular approach, 2
top-down design, 1

do...while loop, 69
dynamic memory allocation, 231

E

enumeration, 433
environment for C, 5

MS-DOS Environment, 5
Unix Environment, 5

escape sequences, 8
evaluation of operands, 53
execution characters, 8
exp(),506
expressions, 15
external,439

F

fabs(),506
fclose(), 514
feof(),362,514
ferror(), 363,514
fflush(), 366,515
fgetc(), 340,515
fgets(), 342;515
fileno(), 515
files, 334

C in Depth

block read I write, 345
character 110, 339
closing a file, 337
end of file, 338
formatted 110, 343
integer 110, 341
opening a file, 335
other file functions, 362
predefined file pointers, 339
random access to file, 348
string 110, 342
structure of a general file program, 338
text and binary modes, 334

floating-point arithmetic, 34
floor(), 506
fmod(),506
fopen(),515
for loop, 71
formatted input and output, 24

floating point numeric input, 26
floating point numeric output, 27
format for integer input, 24
format for integer output, 25
format for string input, 27
format for string output, 28

fprintf(),343,515
fputc (), 339,516
fputchar(), 516
fputs(), 342,516
fread(),347,516
free(),234
freopen(), 367
frexp(), 506
fscanf(),344,516
fseek (), 349,516
fstat(), 517
ftell(),350,517
functions,ll0

advantages, 110·
library functions, 110
user-defined functions, 111
d.efmition, 112
call, 113
declaration, 114,124, 126
arguments, 118, 125
types, 120
variable number of arguments, 450

fwrite(), 345

•

Index

G

getc() and putc(), 340
getchar(), 29
getw(),341
global Variables, 131
goto, 82

H

high level languages, 3
history of C, 3

I

identifiers, 9
if. ..else, 59

Nesting ofif...else, 61
else if Ladder, 63

including files, 389
increment and decrement operators, 35

postfix increment / decrement, 36
.prefix increment / decrement, 36

input/output functions, 513
insertion sort, 184
integer arithmetic, 33
isalnum(), 508
isalpha(), 508
isatty(), 517
iscntrl(), 508
isdigit(), 508
isgraph(), 508
islower(), 508
isprint(), 508
ispunct(), 508
isspace(), 508
isupper(); 509
isxdigit(), 509

K

keywords, 9

L

ldexp(), 507
library creation, 484

creation of library in turbo C, 482
creation of library in Unix, 486

library functions, 110, 126
linkage, 445

linked list, 309
creation oflist, 314
deletion from a linked list, 313
deletion of a node in between, 314
deletion of first node, 313
insertion in between or at the end,~ 312
insertion in the beginning, 312
insertion into a linked list, 311
reversing a linked list, 318
searching in a linked list, 311
traversing a linked list, 311

local variables, 130
log(),507
logl0(), 507
logical or boolean operators, 39

AND (&&) operator, 39
OR (II) operator, 40
NOT (!) operator, 40

loops, 65
while loop, 65
do...while loop, 69
for loop, 71
Nesting Of Loops, 75
Infinite Loops, 77

Ivalue, 456

M

macros, 379
generic functions, 386
macros vs functions, 385
nesting in macros, 381
predefined macro names, 398
problems with macros, 382

magic matrix, 188
inain() function, 125
maHoc(), 231
masking, 413

masking using bitwise AND, 413
masking using bitwise OR, 415
masking using bitwise XOR, 415
switching off bits using Bitwise AND

1
an

Complement Operator, 416 '
memory during program execution, 445
memory models, 500 .
memory, 196
merging of arrays, 185
mixed mode arithmetic, 34
modf(),507

53

532

N

NOT (!) Operator, 40
null directive, 400
numeric constant, 11

o
one dimensional array, 158
open(), 517
OR (I I) Operator, 40

p

pascal triangle, 187
perror(), 364
pointers, 196

array of pointers, 227
function returning pointer, 222.
pointer arithmetic, 201
pointer comparisons, 206
pointer to an array, 212
pointer to pointer, 206
pointers and functions, 219
pointers and one dimensional arrays, 208
pointers and three dimensional arrays, 217
pointers and two dimensional arrays, 213
pointers to functions, 238 I

poiilters varili'bles, 197
subscripting pointer to an array, 216
subscripting pointer variables, 211

pow(),507
precedence of operators, 47
preprocessor, 377
prograpuning languages, 2

high-level languages, 3
low level languages, 2

project Jmilding, 464
building project in'turbo C, 481
'building project on unix, 483
coding, 468
detail design, 465
requirement analysis, 464
testing, 481
top level design, ~65

putchar(), 29
putw (), 341

R

read(), 518

C in Depth

realloc(), 233
recursion, 132

tower of hanoi, 136
advantages and disadvantages of recursion, 139
local variables in recursion, 139

register, 444
relational operators, 37
remove(),365,518
rename(), 364,518

---reserved words, 9
retutn statement, 116
rewind(), 351
rvalue, 456

s
selection sort, 180
self refe!ential structures, 309
setbuf(), 518

. sin(), 507
sinh(),507
sizeo~operator, 43 .
spiral tpatrix, 189
sprint£{), 272,520
sqrt(),507
sscanf(), 273,520

, state), 520
statements, 15
static Variables, 132,442
storage classes in functions, 445
storage classes, 437
strcat(), 261,509
strchr(), 509
strcmp(), 258,510
strcpy(), 259,510
strcspn(), 510
string manipulation functions, 509
stringizing operator (#), 387
strings, 175, 253

array of pointers to strings, 267
array of strings or two dimensional array of
characters, 264
string constant or string literal, 253
string library functions, 257
string pointers, 262
string variables, 255

strien(), 257,510
strncat(), 510 .
strncmp(), 511
strncpy(), 511

index

strpbrk(),512
strrchr(), 512
strspn(), 512
strstr(),512
structure, 288

accessing, members of a structure, 291
array of structures, 293
arrays within structures, .295
assignment of structure variables, 292
declaring structure variables, 289
defining a structure, 288
initialization of structure variables. 290
nested structures, 296
pointers to structures, 298
pointers within structures, 299'
size of structure, 293
storage of structures in memory, 292
structures and functions, 299

suppression character in scanf(), 28
switch, 84.

T
tan(),507
tanh(),507
tell(), 520
tffipfile(), 366,522 /
tm¥nam(), 366,520
tOKen pasting operator(##), 388
tolower(), 509
toupper(), 509
translators, 3

trigraph characters, 8
two dimensional array, 167
type conversion, 44

implicit type conversions, 44
automatic conversions, 44
type conversion in assignment, 45
explicit type conversion, 46

typedef, 326

u
union, 321
unlink(), 365,521
user-defined functions, 111

v
va_arg,450
va_end, 450
va_list, 450
va_start, 450
variable number of arguments, ~50
variables, 14

declaration of variables, 14
initialisation of variables, 14

vfprintf(), 455
void pointers, 229
volatile, 449
vprintf(), 455
vsprintf(), 455

w
while loop, 6,5

, I

The book explains each topic in depth without compromising over the lucidity_ofthe text and

programs. This approach makes this book suitable for both novices arid advanced

programmers. The well -_strnctHred programs are easily understandable by the beginners and--- .

useful for the experienced programmers. The book contains about 300 programs, 210

exercises and 80 programming exercises with solutions of exercises and hints to solve

programming exercises. Five new chapters ~ave been included in this edition ofthe book. The

chapter on project development and library creation can help students in implementingJileir

knowledge and become a perfect C programmer. ~

ABOIFf THE AUTHOR

Suresh ~umar Srivastava has beeg working in software industry for last 7 'years. He has done

B level [rem DOE~ACC Society. He has worked on development of device driver"debugger
. /

and syskm software area.tIe likes to work on system side as well as some creative work for
,I . .

develQ13ment of software tools. He has authored a book on Data· Structures titled" Data

Stnfctures through C in Depth". He is planning to write some more books on different topics,

which can be useful for students to work in system software development. '

Deep'C'Ji Srivastava has done MSc. In Mathematics and Advanced PGDCA from MJP

Rohilkhand University. Her areas of interest are C and Data Structures. She also likes to lea~

and'work on systems' software. She has authored a book OIl Data structures titled "D;ta

Structures thtough C in Bepth". ~b-e Is-plaJllling to work on some other topics and use her

creativity in system software development.

www.bpbonline.com

~- ---

ISBN 81-8333-048-7

1"", HOm
IRs. 360/-1

/---------

	C in Depth by Suresh Kumar Srivastava
	a
	1scan0001
	1scan0001 (2)
	1scan0001 (3)
	1scan0001
	1scan0001 (2)

	scan0001
	scan0002
	scan0003
	scan0004
	scan0005
	scan0006
	scan0007
	scan0008
	scan0009
	scan0010
	scan0011
	scan0012
	scan0013
	scan0014
	scan0015
	scan0016
	scan0017
	scan0018
	scan0019
	scan0020
	scan0021
	scan0022
	scan0023
	scan0024
	scan0025
	scan0026
	scan0027
	scan0028
	scan0029
	scan0030
	scan0031
	scan0032
	scan0033
	scan0034
	scan0035
	scan0036
	scan0037
	scan0038
	scan0039
	scan0040
	scan0041
	scan0042
	scan0043
	scan0044
	scan0045
	scan0046
	scan0047
	scan0048
	scan0049
	scan0050
	scan0051
	scan0052
	scan0053
	scan0054
	scan0055
	scan0056
	scan0057
	scan0058
	scan0059
	scan0060
	scan0061
	scan0062
	scan0063
	scan0064
	scan0065
	scan0066
	scan0067
	scan0068
	scan0069
	scan0070
	scan0071
	scan0072
	scan0073
	scan0074
	scan0075
	scan0076
	scan0077
	scan0078
	scan0079
	scan0080
	scan0081
	scan0082
	scan0083
	scan0084
	scan0085
	scan0086
	scan0087
	scan0088
	scan0089
	scan0090
	scan0091
	scan0092
	scan0093
	scan0094
	scan0095
	scan0096
	scan0097
	scan0098
	scan0099
	scan0100
	scan0101
	scan0102
	scan0103
	scan0104
	scan0105
	scan0106
	scan0107
	scan0108
	scan0109
	scan0110
	scan0111
	scan0112
	scan0113
	scan0114
	scan0115
	scan0116
	scan0117
	scan0118
	scan0119
	scan0120
	scan0121
	scan0122
	scan0123
	scan0124
	scan0125
	scan0126
	scan0127
	scan0128
	scan0129
	scan0130
	scan0131
	scan0132
	scan0133
	scan0134
	scan0135
	scan0136
	scan0137
	scan0138
	scan0139
	scan0140
	scan0141
	scan0142
	scan0143
	scan0144
	scan0145
	scan0146
	scan0147
	scan0148
	scan0149
	scan0150
	scan0151
	scan0152
	scan0153
	scan0154
	scan0155
	scan0156
	scan0157
	scan0158
	scan0159
	scan0160
	scan0161
	scan0162
	scan0163
	scan0164
	scan0165
	scan0166
	scan0167
	scan0168
	scan0169

	Bindern
	Binder3
	scan0001
	scan0002
	scan0003
	scan0004
	scan0005
	scan0006
	scan0007
	scan0008
	scan0009
	scan0010
	scan0011
	scan0012
	scan0013
	scan0014
	scan0015
	scan0016
	scan0017
	scan0018
	scan0019
	scan0020
	scan0021
	scan0022
	scan0023
	scan0024
	scan0025
	scan0026
	scan0027
	scan0028
	scan0029
	scan0030
	scan0031
	scan0032
	scan0033
	scan0034
	scan0035
	scan0036
	scan0037
	scan0038
	scan0039
	scan0040
	scan0041
	scan0042
	scan0043
	scan0044
	scan0045
	scan0046
	scan0047
	scan0048
	scan0049
	scan0050
	scan0051
	scan0052
	scan0053
	scan0054
	scan0055
	scan0056
	scan0057
	scan0058
	scan0059
	scan0060
	scan0061
	scan0062
	scan0063
	scan0064
	scan0065
	scan0066
	scan0067
	scan0068
	scan0069
	scan0070
	scan0071
	scan0072
	scan0073
	scan0074
	scan0075
	scan0076
	scan0077
	scan0078
	scan0079
	scan0080
	scan0081
	scan0082
	scan0083
	scan0084
	scan0085
	scan0086
	scan0087
	scan0088
	scan0089
	scan0090
	scan0091
	scan0092
	scan0093
	scan0094
	scan0095
	scan0096
	scan0097
	scan0098
	scan0099
	scan0100
	scan0101
	scan0102
	scan0103
	scan0104
	scan0105
	scan0106
	scan0107
	scan0108
	scan0109
	scan0110
	scan0111
	scan0112
	scan0113
	scan0114
	scan0115
	scan0116
	scan0117
	scan0118
	scan0119
	scan0120
	scan0121
	scan0122
	scan0123
	scan0124
	scan0125
	scan0126
	scan0127
	scan0128
	scan0129
	scan0130
	scan0131
	scan0132
	scan0133
	scan0134
	scan0135
	scan0136
	scan0137
	scan0138
	scan0139
	scan0140
	scan0141
	scan0142
	scan0143
	scan0144
	scan0145
	scan0146
	scan0147
	scan0148
	scan0149
	scan0150
	scan0151
	scan0152
	scan0153
	scan0154
	scan0155
	scan0156
	scan0157
	scan0158
	scan0159
	scan0160
	scan0161
	scan0162
	scan0163
	scan0164
	scan0165
	scan0166
	scan0167
	scan0168
	scan0169
	scan0170
	scan0171
	scan0172
	scan0173
	scan0174
	scan0175
	scan0176
	scan0177
	scan0178
	scan0179
	scan0180
	scan0181
	scan0182
	scan0183
	scan0184
	scan0185
	scan0186

	Binder4
	scan0001
	scan0002
	scan0003
	scan0004
	scan0005
	scan0006
	scan0007
	scan0008
	scan0009
	scan0010
	scan0011
	scan0012
	scan0013
	scan0014
	scan0015
	scan0016
	scan0017
	scan0018
	scan0019
	scan0020
	scan0021
	scan0022
	scan0023
	scan0024
	scan0025
	scan0026
	scan0027
	scan0028
	scan0029
	scan0030
	scan0031
	scan0032
	scan0033
	scan0034
	scan0035
	scan0036
	scan0037
	scan0038
	scan0039
	scan0040
	scan0041
	scan0042
	scan0043
	scan0044
	scan0045
	scan0046
	scan0047
	scan0048
	scan0049
	scan0050
	scan0051
	scan0052
	scan0053
	scan0054
	scan0055
	scan0056
	scan0057
	scan0058
	scan0059
	scan0060
	scan0061
	scan0062
	scan0063
	scan0064
	scan0065
	scan0066
	scan0067
	scan0068
	scan0069
	scan0070
	scan0071
	scan0072
	scan0073
	scan0074
	scan0075
	scan0076
	scan0077
	scan0078
	scan0079
	scan0080
	scan0081
	scan0082
	scan0083
	scan0084
	scan0085
	scan0086
	scan0087
	scan0088
	scan0089
	scan0090
	scan0091
	scan0092
	scan0093
	scan0094
	scan0095
	scan0096
	scan0097
	scan0098
	scan0099
	scan0100
	scan0101
	scan0102
	scan0103
	scan0104
	scan0105
	scan0106
	scan0107
	scan0108
	scan0109
	scan0110
	scan0111
	scan0112
	scan0113
	scan0114
	scan0115
	scan0116
	scan0117
	scan0118
	scan0119
	scan0120
	scan0121
	scan0122
	scan0123
	scan0124
	scan0125
	scan0126
	scan0127
	scan0128
	scan0129
	scan0130
	scan0131
	scan0132
	scan0133
	scan0134
	scan0135
	scan0136
	scan0137
	scan0138
	scan0139
	scan0140
	scan0141
	scan0142
	scan0143
	scan0144
	scan0145
	scan0146
	scan0147
	scan0148
	scan0149
	scan0150
	scan0151
	scan0152
	scan0153
	scan0154
	scan0155
	scan0156
	scan0157
	scan0158
	scan0159
	scan0160
	scan0161
	scan0162
	scan0163
	scan0164
	scan0165
	scan0166
	scan0167
	scan0168
	scan0169
	scan0170
	scan0171
	scan0172
	scan0173
	scan0174
	scan0175
	scan0176
	scan0177
	scan0178
	scan0179
	scan0180
	scan0181
	scan0182
	scan0183
	scan0184
	scan0185
	scan0186
	scan0187
	scan0188
	scan0189
	scan0190
	scan0191
	scan0192
	scan0193
	scan0194
	scan0195

